“Assembly of Japanese bicycle require great peace of mind!”
—Robert M. Pirsig: Zen and the Art of Motorcycle Maintenance

Blank page

1

INTRODUCGTION ...cootiiiitieeeeeeeeeeeeeeeeeeeeemeemeeeesessssesss 5

1.1 WWHAT IS SUMOSLANG?ceeiitiieeeeeeeeeiittteeeeeeeeesittaaeeeeeeesasataaseesaeesaassssaeaeaassaasssaassaesseaansssseaaesesaaasssseseeessannnrres 5
STRUCGTURE.........cciiiieeeeeenceeereeeenensseeeseeeenmssssssessesesnnsssssssssssnnnssssssssssssnnssssssssssesnnnssssssssssssnnnssssssssesnnnnssssssssanen 6
2.1 GENERAL SETTINGS .eeeeeeeeteeeeeeeeereeeeeeeeeseseeeeeeeseeeseeeeseessereeseseeesseeeeeseeseeseeeesterereeeeereeeteseeeeerereeererererererererereeerereenn 7
2.2 PROCESS IMIODEL .ttt s e e e s e s e s e e s e e e s s s e e s e s e e e e s e s e aeaaaeaaaaaaaeansasasasesasasasasnsnsasasesssesesnens 7
2.3 PROCESS UNITS 1iiiuittttteeeeeeeiutttteeeeeeeseutesaeesesesassssaeeeesssassnstanseesssasssssanseesssasassssnseesessssnssesseesessssssssssneseessnnsnnnes 8
2.3.1 COMPOSITE PrOCESS UNITS ..uuvvuvevevurereieeetieeiasstetttttesssssssessseseeeeesesesasessasaessesesesasesasasesasssssssesssssssssssssssnsnsannnnns 9
2.4 PROCESS UNIT HIERARCHYuuuvivteeeesseiouttaseeesesasansssseeesssssansssnesesssssansssssessssssassssssssessssnsssssessessssssssssnssesssnssnnnes 10
b R o [o T L8V (o L3l T =SS 11
PROGCESS CODE LAYOUTcceuueeiiiiiiiiiennnsissesiisssnsssssssssssssnssnnssssssssssssnnssssssssssssnnnnes 12
3.1 TABLE STRUCTURE ...ieetttttueeseeetttuueueseeeeeteasssnsseeeesesssssnseessesssssssssesessnsssssnssesessssssnssssesessnsssnnsesesessnsssnnseseseessnnnns 12
3.1 SIMPIE EADIC.......ceeeeeeee ettt et e et e e 13
2 Y V4 o VU PO UUPPO R UUPPPPPPPPPN 13
3.1.3 B BIOCK ettt e a e et e et e et e et e et eenaee e s 16
R B 6 ol T (-SSP PPN 16
3.2 TABLE DESCRIPTOR....uuutttteeesesasunsrureeesesssanssssasesesssassssssssesssssansssnssessssssnssssssssssesasssssssssssssnssssssssessssmssssessesssennns 17
2 B o) = s [[OOSR 17
33 GENERATING THE INTERMEDIATE XIMIL FILE .oiuitiitieee e e e sttt ee e e e e setttee e e e e e sesaetae e e e e e sennntaaaeeessesnnnsaneeeessesnnnssnnneeens 19
BASIC LANGUAGE ELEMENTScoitiitieeiiiiiiiiiennnesisestisesnmsssssssssssesnnssssssssssssnnssssssssssssnnssssssssssssnnnsssssssssssnnnnns 20
4.1 AASSIGNMENTS. ...uttreeeeeeeeesitreeeeeeeeesaittaseeeseeesaasssseaaeeesaasssaaseaeesasasssasseaeesesasssssseeesesaassssaeeseeesanssssaseeeesennnnrnes 20
O R 0] o= o {0 £ OO PTPOPPPPPPPP 21
4.2 DATA TYPES ceeeteeeeeeeutreeeeeeeeeeitreereeeeeesattaaeeaeeeesastasaaaeeeesaastasaeaeeeesasssssaeaeeeesaassssasasaeesanssssseaeeeesaasnssaseeeeeanasnrnes 21
4.3 SYMBOL ROLES .. uvveteeeeieesutreeeeeeeeesistaseeeeeeesassssseeeseeesaasssseseeessaaassssssseessesasssassseessesasstssseaessesasntasseeessessnnssnsesees 22
4.4 U o 1 0] N PRSPPIt 22
ADVANCED LANGUAGE ELEIMIENTSiiieieeiiiiiiiiiennneiesiineennnssssssssssennsssssssssssssnnssssssssssssnnnsssssssssssnnnnssssssnsans 24
5.1 EXPANDABLE SYIMBOLS 1.uuuuuuueueuenenennnenenssssssnsssssssnsssnsnsnsnsnsses 24
R A X VPRSPPI 24
B = 1 - PR RPPRN 25
G B 611V P UUPUO U UPTPPPPPRN 25
B B = TP UPPO R UPTUPPPPRN 25
I B o7 =3 o L1 o] ¢ S 25
5.2 RULES .ttt ettt ettt ettt e e e ettt e e s s e st et et e e s s e saaabe e e e e e e s e s s be e e eaeese s aba bt aaeeeesanbataeaeeeesaarnrraaeeeeeannanrees 26
I R 1 1] 1V (=X SR UPPRN 26
I A & (o T4 Lo |14 To LTSS UP PPN 27
5.2.3 NON-KEYWOIT FUICS ...ttt ettt e e e ettt a e e e e ettt e e e e e eesstbsseaaaaeessssssaaaaeeassees 28
I 5 (=111 o1 A 01] VP UPPRN 29
I R 01 1-T g 4V =X P UPPRN 30
53 IMIECHANISIM OF EXPANSION «..uetttvtteeeseesutrareeesssssssrereeesssssanssereeeesssssnssssseesssssssssssseesessssssssseesessssssssseseesssnnssnnses 31
O I Y 11 o (== (o Yo [K o] 31
S I Yo LV T Tol=To [=3 (e o[£ 1Y (o) ¢ 32
5.3.3 Even more adVanCed @XPONSIONccecueeeeecriieeeeiieeescieaesstteeesttaaesettaessssesasssesasssseaessssesessssesesannes 32
SPECIAL CALCULATIONSo oiiieieeeeceirrieeenenssseeeseeeennsssssssssesesmnssssssssesennnssssssssesssnnsssssssssssnnnnssssssssesennansssssnnnnns 33
6.1 SUMMATION, MULTIPLICATION ...eeetttuttueeeeeeeeessssnaeeessssssssnasesessssssssnsesesssssssssesessssssssnnsesessssssssnsesessssssssnneeeesssses 33
6.2 GUIJER MATRIX CALCULATIONS ...eeetereeeeeeeeereeeereeeeeeeeeeeseeeeseeseeeseeeeeseeeeereseseseesesseseseeereseeetereseeeseseresererererererererereren 34
6.3 PH CALCULATION ..ttt ee et eaeeeeeaeaeeeeeseeenanens 35
6.4 EVENT HANDLING .« sesesesese s e ssesssesssssssssssssssnsssssssnsssssssssesssssssssssssssssssesesssssnsssessssseses 37
INAIMESPAGES......ccouuiiiiiiiiiiennniiiiiiiitesssssssssiisessssssssssttsesssssssssssttesssnss 38
7.1 IIVIPLICIT NAMESPACES ..t vttt eteuutrereeeessesausrereeesssssassseneeessssssnsseseeesssssasssssseesessssssssseesessssnsssseesesssssssssseesesssnssnnees 38
7.2 EXPLICIT NAMESPACES ...etteeteesutteteeesssesausteeeeesssssasessneeessssssssssneeesesssasssssseessssssssssseesesssnssssseesesssssssssseeeesssnssnnees 39

8 USING MULTIPLE MODELS

... 40
8.1 DEFAULT IMODEL 1tutitttteeettieeettteeettteeetteeetataeesstaneessannsesstnsesssaneessnnnsasssnesssnnessssnnsessnnnesssnneeessnnsessnneesssnneesnnnnns 40
8.2 USING NON-DEFAULT IMIODELS .uuuttttuneeettueeetuueertsteesstneeessnneesssneesssnesesssnsesssnaeesssneeesssnsesssnneessnneesssnnsesssnnesssnneeses 41

9 ADVANCED TOPICScuieereeinireenerenerenereeernseressessscssssessssessssssssssssessssessssssssessssssssessssssnsessssesnsessnsssnssssnsesnnssnnns 43

9.1 SIMIT COMMAND LINE USAGEttttteeeeesuiietteeteeesauustteeeesesauusteteeesesasssteaaeesssasaunsateeeeesasanssbeeesesssassssaeesesssannnnnees
9.2 ATTRIBUTE AND HANDLING PROPAGATION
9.3 ALGEBRAIC LOOPS. ...ttt eutteeuteeeueesteestaesseessssessseessssesssesssssesssesssssesssesssssesnsesssssesnsessnssesnsesssseesnsesenssesnsesessesnsens
9.3.1 1 Solving the equation system
9.3.2 Process code example for automatic loop breaking
9.3.3 Process code example for manual loop breaking
9.3.4 4 Complex equation system

v

1 Introduction

Assembly of a processing plant model in Sumo require great peace of mind, to extend Mr.
Pirsig’s observation. This documentation contains the elements of the Sumo modeling language.
Although it is not simple, once mastered, wonderful models can be created in a well-organized
and documented fashion. From now on the modeling language will be referenced as

SumoSlang.

1.1 What is SumoSlang?

SumoSlang is the modeling language used in the Sumo process modeling software. It was
developed with modeling very large systems in mind: containing process units and process
models. It was developed also with engineers in mind: write your equations in a familiar
environment namely Microsoft Excel.

The naming, organization of tables and their content on various Excel worksheets and the

keywords used is known as SumoSlang. Some of the main features of the language are:

e assignment oriented
o assignment: only one variable is allowed at the left-hand side of the equation
o formatted equation: symbols with arbitrary formatting (subscript, superscript,

Greek characters) are allowed on both sides of the equation

e easy to comment and add notes

e documentation and code are at the same place

e algebraic calculations

e dynamic calculations

2 Structure

The Sumo process modeling software contains a standard library of process code. The elements
of this library are process code files in the above-mentioned Excel document format which
represents the source code of the library. There are three process code types:
e general settings —with the fixed file name systemcode.x1sx
e process model —with arbitrary file name, e.g. Sumo1.x1sm (the model files usually
contain macros for validation, hence the . x1sm extension)
e process unit—with arbitrary file name, e.g. CSTR with diffused aeration and input
DO.x1sx
SumoSlang is processed by the so-called Sumo Model Translator (SMT) first, which
understands SumoSlang and converts it to an intermediate XML format for further processing.
This documentation will discuss the SumoSlang features and rules from the SMT point of view.
The graphical user interface of the Sumo modeling software may impose other requirements on
the process code e.g. various worksheets containing irrelevant data for the SMT.
The standard library source code is placed in a specific folder structure shown on the
following picture, where the Sumo install folder is open in Windows Explorer.

| B - Process code

File Home Share View v @
« v A » kes » AppData » Local » Dynamita » Sumo18 » Process code v O Search Process code R
v Sumo18 ~ Name Date modified Type Size
cache Languages 2018.09. 20. 15:26 File folder
tmp Model base 2018. 09. 20. 15:26 File folder
AutoSave Process units 2018. 09. 20. 15:26 File folder
build System files 2018. 09. 20. 15:26 File folder
Examples Templates 2018. 09. 20. 15:26 File folder
Tools 2018. 09. 20. 15:26 File folder
Logs
Manual

My Process Code
v Process code
Languages
Model base
Process units
System files
Templates
Tools
fontconfia

6 items E =

Figure 1 Sumo process code structure

The red highlighted folders are used by the SMT to lookup for process code files mentioned at
the beginning of the chapter (settings, models, process units).

It is considered a good practice to not modify the standard library, but place user code in
the My Process Code folder which has the same inner structure as Process Code.

The following sections will explain the structure of the different process code files, what are
their mandatory elements and what can be freely chosen by process code authors.

2.1 General settings

Sumo settings are stored in a special Excel file named systemcode.x1sx. The name of this file is

mandatory.
Figure 2 shows the first worksheet of the system code with other worksheets expected by

the SMT highlighted in red:

e System settings —various system wide settings and constants

e Functions—function declarations recognized by the SMT

e Constants—scientific constants used in calculations

e Sumoconv—dictionary of special (Greek) character conversions to C++ code
e Species—dictionary of chemical species

o0 e O Ew-J - o systemcode.xIsx Q.- Search Sheet @-
Home Insert Page Layout Formulas Data Review View 12 Share

D85S : fi v
A B [D E F G H 1

18

19 General indicators

20 Symbol Name Value Low limit High limit Unit Decimals__|Rule Principle/comment

21 Mode General mode indicator o o 3 Integer

2 [insteacy Steady state mode indicator FALSE |Boolean

23

. ODE solver settings

25

2% Valid options for SolverAlg

27 1 Fixed step Euler

28 2 Adaptive Euler

2 3 Heun

10 4 Runge-Kutta-Prince-Dormand

31 5 BDF

2 6 Adams-Moulton

33 7 Radau

3

35 General ODE solver settings

£ Symbol Name Value Low limit High limit Unit Decimals_|Rule Principle/comment

37 Solverlg ODE solver algorithm 5 1 7 - Integer

8 StopTime Stapping time o o 16412 ms Integer

39 DataComm Data |/0 interval 3600000 1 16412 ms Integer

0 RelODETolerance Relative ODE tolerance 0.00001 1E-20 0.1 conc

a ReODFTalprANCe TADSoniTe OIOF Tolerance 0000001 1F-20 L ronc:
» System settings Functions Constants Sumocony Model Interfaces Variables I Species ' Unit conv Model options Plantwide setup Predefir +

Ready LT

Figure 2 The systemcode.x1sx file containing systemwide settings. The worksheets highlighted in red are
expected by the SMT.

2.2 Process model

The model files contain various scientific equations, matrices and parameter values used in
simulations. Process units may reference one or more models thus, the variables and equations
of the included model(s) are available in process unit calculations.

Figure 3 shows a model file example with frequently used worksheets highlighted.

A26

[] O 3 o~ i Sumol.xlsm Q.- Search Sheet ©-
Home Insert Page Layout Formulas Data Review View 1#* Share
- Jx M
8 [D E F G H 1 1
Check parameters
Ordinary heteratrophic organisms kinetics (OHO) Type(Kinetic)

Symbol Name Default Low limit High limit Unit Decimals | Rule Principle/comment
oo Maximum specific growth rate of OHOs 4.0 0 Bighumber d* 1 Key{980)

Wsermoio Fermentation growth rate of OHOs 0.3 0 BigNumber d* 1

Boso Decay rate of OHOs 062 (V] BigNumber s 2

Nowo.anas Reduction factor for anoxic growth of OHOs 060 0 unitless 2

Ksaas Half-saturation of readily biodegradable substrate for OHOs (AS) 5.0 0 Bighumber g COD.m* 1 Key{970)

Koz onas Half-saturation of 02 for OHOs (AS) 0.05 0 Bighumber g0;m> 2 Key{960)

Kuraas Half-saturation of VFAs for OHOs AS) 05 0 BigNumber g COD.m’ 1

Kucowanoss Half-saturation of methanal for OHDs (AS) 0.1 0 BigNumber g cOD.m” 1

Koot Half-saturation of NOx for OHOs (AS) 0.03 0 Bighumber gN.m> 2

Kysasemins Half-saturation of VFAs in fermentation of OHOs (AS) 50.0 0 Bighumber g COD.m* 1

Kssana.as Half ion of readily substrate in by OHOs (AS) 5.0 0 Bighumber g CoD.m’* 1

Methylotroph kinetics (MEOLO) Type(Kinetic)

Symbol Name Default Low limit High limit Unit Decimals | Rule Principle/comment
lweow Maximum specific growth rate of MEOLOs 13 [BigNumber d* 1

Byecio [pecay rate of 005 0 Y v d' 2
1 = TR T A TATAT
Help Concepts | Parameters Model pH Species Components Galculated variables] | 4

Ready 1T

Figure 3 Excel file containing model code. The worksheets highlighted in red are usually used in process unit
calculations.

Some of the worksheet names are mandatory others are arbitrary. The mandatory names are

expected by the SMT when a shorthand symbol is evaluated (see subsections of 5.1 Expandable

symbols).

The fixed names are:

Parameters —is a list of parameters having fixed numerical values used in calculations
Species—a dictionary of equilibrium species used in pH calculations
Components—contains state variables in dynamic systems, or model components in
algebraic systems (e.g. chemical species that determine the chemical composition of the
investigated solution: Ca2+, Mg2+, etc.)

Calculated variables —contains equations calculating variables dependent on other
variables

Other worksheets with arbitrary names are:

Model —contains the so-called Gujer or kinetic matrix, which is a table used by process
units to calculate biokinetic reactions.

pH—contains all the information to calculate the equilibrium species in reactions that
are considered during pH calculations

The model may contain other, user defined worksheets which can be referenced in process unit

code. The referencing methods are discussed in section 5.1 Expandable symbols.

2.3 Process units

The process code contained in process units describe the behavior of bioreactors, flow elements

separators and other modeled elements. As mentioned above the process units may “pull in”

variables and equations from one or more model files and use them in their calculations.

The process units should be able to work with different models which means that they

cannot reference models by name, but some other mechanism. See again section 5.1 Expandable

symbols for more information.

Figure 4 shows the code of a process unit with the commonly used worksheets highlighted.

The names of these worksheets are mandatory.

e Unit—a dictionary of attributes and component handlings valid in the process unit (see
sections 5.2.1 Attributes and 5.2.2 Handlings)

e Parameters—contains the simulation parameters modifiable by the user in the Sumo
process modeling software. These are valid only in the process unit, but model
parameters can be “pulled in”.

¢ Code—contains the process code of the process unit grouped in so-called code locations
(see section 3.2.1 Table)

e0e N g v~ > o Simple CSTR.xIsx Q. Search Shee @-
Home Insert Page Layout Formulas Data Review View 12 Share

A29 = S M
L B (4 o E F G H 1

7 Hydraulics

8

9 |Volumetric flow C

10 [symbol Name Expression [unit [Decimals _[Rule |Prindiple/comment |

1 [outp.a Outflow inp.Q [m.a? | [[same outflow as inflow |

12

13 Reactor hydraulics C i ‘omm)

14 Symbol Name i Unit Dedmals _|Rule Principle/comment

15 HRT Hydraulic retention time LV/inp.Q d

16 Q Outflow inp..Q m'd’ o be able to show Q through reactors by default in tables

17

1z Biokinetic reactions

19

20 Gujer matrix C:

21 Symbol Name Expression Unit Decimals [Rule Principle/comment

22 Muooemeds; |MODELModel.Name MODELModel.Rate MODELMadel.Unit Reactive; Non-Palymer

23 Wsone model v | Stoichiometry coefficient MODELModel.SV Reactive

o rate_SV MODELSV.Name rate Viones Modal 5 ® FMGOEL Madel, g.m>.d? ;::;’;:T:nv‘;ﬁ,‘if

25

Help Unit Parameters Code Predefined charts Display Popup 4y

Figure 4 Process unit file with the commonly-used worksheets highlighted in red.

Other, optional worksheets usable by the SMT can be added to the process unit. These

worksheets also have mandatory names and they are the following;:

Components—it is like the Components in the model but valid only in the process unit.
They may overwrite model components.

Functions—it is like the Functions in the systemcode.x1sx but valid only in the process
unit.

Structure —it is present in composite process units. Contains the list of components and
connections between them, as well as connections to the outside world.

2.3.1 Composite process units

A process unit may consist of several subunits. The components are separate process units with
their own process code files. Grouping them in a single process unit hides the internal

complexity, the group behaving like a black box with few connections to the outside world.

The Structure worksheet introduced in the previous section contains this grouping

information. Figure 5 shows an example of the Structure sheet of a composite unit.

Columns of the component table play an essential role in how the composite unit controls

its components (see section 2.4 Process unit hierarchy).

ece B Ew-S6 + ¢ Trickling Filter.xIsx Q.- Search Sheet @-
Home Insert Page Layout Formulas Data Review View 12 Share
A27 . fx o
A B @] 3 F G H] K L M N o 3

[rricking fiter |
Uit component _ _Junit ame —Juabel ____[esctive] polymer |inheritkineaR __[inheritstoPaR [inheritequPAR | Models |
Tricklingfilter Top. Top. | TRUE FALSE TRUE |TRUE TRUE MODEL
Tricklingfilter Middle Middle TRUE
Tricklingfi |Bottom |Bottom [TRUE

————

Internal connection) (X

° Juabet _____Jrom 0|
TtoMpipe Liquid Top..outp |Middle..inp
MroBpipe Liguid Middle..outp | Bottom..inp

13 (External connection) [ET N

u Jabel _______[rrom ___Jro |
15| | |inp Liquid inp Top..inp |
16 | [ow | Liauid [Bottom.outp_|outp |

MODEL
MODEL

FALSE
FALSE

TRUE TRUE TRUE
TRUE TRUE TRUE

Help Unit Parameters Code Structure Display Popup +

Ready L

Figure 5 Structure worksheet of a composite process unit showing three components, their internal connections
and the external connections of the whole composite unit.

2.4 Process unit hierarchy

In the Sumo software the modeled plant is organized in a process unit hierarchy. The root
element is (an artificial) composite process unit which lists the participating process units as
components. These process units may be simple or composite too.

In the previous section it was mentioned that composite process units (parents) controls its
components (children). This control is represented by passing so-called attributes, handlings
and parameters from the parent to the children (see sections 5.2.1 Attributes and 5.2.2
Handlings).

The artificial root element is provided for the user by the Sumo software to be able to set
plantwide simulation properties and parameters. The Unit and Parameters worksheets of a
process unit contains attributes, handlings and parameters valid in that process unit, but these
values can be overwritten by the root element or by a parent composite unit (if the process unit
is part of one).

The intention of overwriting can be declared in the columns of the component table present
on the Structure sheet of the parent process unit. On Figure 5 the Unit component table has
columns between Label and Models. Those are attribute names and the values in the different
rows are passed to the corresponding process unit.

In a similar manner, columns after the Models column represent handling names and the
values in the different rows are passed to the corresponding component (the example does not
contain such columns).

Where a cell in a given column is empty no value is passed to the component unit thus the
value defined in the component unit prevails.

Figure 6 shows the hierarchy of four modeled process units (PUi, PU2, PUs, PUs) where PU1
and PUs are composite units consisting of two process units: PU11, PU12 and PUs,1, PU42
respectively. The example shows on the left side of the hierarchy how attributes and handlings
can be passed from parent to children, while the right side shows two methods for passing
model parameters from parent to children.

10

Modeled Plant The model

_________ used in all units

Attributes and handlings
can be passed from parept
to children. This is optighal.

Pracess units ma
inherit model
parameters from
their parents...

..\or they can use
em directly
from the model.

>

PU4’2

Figure 6 Simple process unit hierarchy. The dashed line between the Root and the Model means that the Root is
not the parent of the Model, only uses it.
Parameter passing has a special name in SumoSlang: parameter inheritance. It is explained in
section 5.2.1 Attributes in more detail. Here it is enough that when inheritance is ON the
parameters come from the parent of the process unit, otherwise from the model. The root
process unit always takes its parameters from the model.

2.4.1 Plantwide code

Global settings and properties can be given in the so-called plantwide code file. This is provided
by the Sumo software per modeled plant and it is not part of the process unit library
accompanying the software.

One can think of the plantwide code as if the software would give access to some elements
of the artificial root process unit. The plantwide code file looks like a normal process unit, it has
Unit, Parameters and Code worksheets and the data given on these worksheets will be
incorporated in the root element. However, the user cannot reach the Structure sheet of the root
element through plantwide code.

Composite process units can reach parameters and other variables of their direct children
by prefixing the variables with the child unit name like this:

ChildName. .variable

The plantwide code is an exception at the moment of this reference rule. When a variable
from a child unit (direct or deep in the hierarchy) is needed in plantwide calculations it should

be qualified with its full namespace prefix (see chapter 7 Namespaces).

11

3 Process code
layout

Figure 2 shows a worksheet containing typical process code. The process code rows are placed
in neat tables which gives an organized look and feel to the code. The tables are separated by at
least one blank row. Note that the pretty formatting, coloring of the tables does not influence
how they are perceived by the SMT. For example, if the user would insert some text in cell B10,
the SMT would include it in the first table. The tables contain the process code and anything
outside of them is considered as comment and ignored.

3.1 Table structure

Every table should have a
e descriptor—a 3-segment cell range B2:D2 in the example mentioned above
o table type—cell B2, it can be empty or may contain one of the following

keywords
= Array
= if block

= C++code
* Newton-Raphson—used in model code on the Calculated variables
worksheet
= Port, Attribute, Model, Handling—used on the Unit worksheet of process
units
* SolverConfiguration—meant to replace Newton-Raphson table types in
tandem with Equilibrium code locations (see 9 Advanced topics)
o table name—cell C2, contains a meaningful grouping name of the table content
o table tag—cell D2, like table type it can be empty or may contain one of the
following keywords
* Pure—used only on the Functions worksheet of system settings
* Type(arg)—used in model code (Parameters, pH, Calculated variables) for
further grouping tables
* Codelocation(arg) —used on Code worksheet of process units. The
argument may be one or more of the following keywords
e ZeroTime
e DataComm
e Integrated
e Equilibrium
= Scope(arg)—used on Unit worksheet of process units
e header—the range B3:33 in the example. The number of columns is arbitrary. Some of
the column header names are fixed (e.g. Symbol, Name, Value, Rule) others are arbitrary.
¢ Dbody—the code lines grouped in the table (the body can be empty). Its range is B4:39 in
the first table of the example.

12

3.1.1 Simp

le table

Usually the range of a table is determined by the content of the Symbol column and the header

row as shown on the following picture.

o0 e M E v J - o systemcode.xIsx Q. Search Sheet ©-
Home Insert Page Layout Formulas Data Review View 12 Share
D8S : fi v
A B c D E F H 1
1
2
3 L Symbol Name Value Low limit High limit Unit Decimals _|Rule Principle/comment]
a [TFlantiame ame of plant Instance ritlalstring trng
5 Time Sumo system time (passed from core] o o 16412 ms Integer
6 Speed TRUE: Fast, approximate FALSE: slower, exact FALSE Boolean
7 Debug Debug build/messages FALSE Boolean
8 Logging Logging on FALSE Boolean
9 Terminate olver ion flag FALSE Boolean
10
Ganaral indiratare
» System settings Functions Constants Sumocony Model Interfaces Variables Species Unit conv Model options Plantwide setup Predefir +

Figure 7 Table boundaries.

The key elements like descriptor, header and body described in the previous section are
determined relative to the Symbol cell. The table extends to the right and down while the Symbol
row and column contains non-empty cells.

Some table types do not follow this structure but should comply to some different structure
nevertheless. Such table types are the Array, if block and C++ code.

The rows of a code table represent assignments in the form of a
a < b (b goes to a). The left-hand side of the assignment is in the Symbol column of the table,
while the right-hand side is in one of the Value or Default or Expression columns. In some cases,

b, or more precisely

the Expression column may break in several parts (see 3.1.2 Array).

3.1.2 Arrays

Arrays are fundamental in every programming language. In SumoSlang they can be specified in
three ways. The first is a simple table containing a row with its symbol in array notation e.g.
var[]. SumoSlang require a so-called array rule in the Rule column of the array row, like [n],
where n is the size of the array and it is declared on the Parameters sheet of a process unit file.
The examples were taken from the Layered SBR with calculated DO.x1sx.

Figure 8 shows an example of array size definition. On the Parameters worksheet the right-
hand side of the assignments is contained in the Default or Value column.

eve OEw- & - 0" Layered SBR with calculated DO.xIsx Q- Search Sheet @-
Home Insert Page Layout Formulas Data Review View 1 Share
AL20 fx 4
A 8 c D 3 F G H I
45 Xrss, minmax | Non-settleable TSS 20 Zero MasxStateVar gm’ 1 |
a6 compry, Boundary compression concentration 6000 Zero BigNumber gm® Q Compression is taken into accour
a7 Xiss minpieker | CONCENtration at top of sludge blanket 2500 Zero MaxStateVar gm® o
48
a9
s BRI Joetaut ____Juowiimit _____Jwightimit ____Junit ________Joecimats ___Jruie _____|principle/comment __|
51 |n Number of layers in vertical direction le |3 | |- lo Dimension |
52
53 Amy
st lame —— Joetaurs___|ochukizios) |oshuks [ocaukiiston) octaukn —Jiowime [hightmt —|un
55 |inpfal] Fraction of influent flow to the layers lo o |1 o o zero One |
56 etftol] Fraction of effluent flow from the layers 1 o ‘o ‘o o Zera One
57 Sludgefol] |Eraction of sludge flow from the layers o o o o 1 |2ero |one
Help Unit Parameters Components Code Display Popup +

B @ m -

Count: 34 Sum: 105

Ready 1T Average: 0.875

Fiqure 8 Dimension type variable definition in row 51.

13

An array size definition requires a Dimension rule specifying that it is an array dimension
type variable. It is worth mentioning that SumoSlang handles only one-dimensional, real
number arrays for now.

Figure 9 shows an example of simple arrays in various code tables.

[svn |MODELSV.Name concentration |sv_ol)

::'"““: eter Codelocation(ZeroTime)

| MODEL.SV.Unit |[n); Handling(integrated) Uni(ial\ze state variables ‘

e0e ME w6 + O Layered SBR with calculated DO.xlsx Q~ Search Sheet @-
Home Insert Page Layout Formulas Data Review View 12 Share

Al : fi v

A B c D E F G H

1 Initialization

2

3 SV Initialization Codelocation(ZeroTime)

PO o fRame Jopresor | ecmals—pule——————|princpie/aomment |

5

6

Isymbol ______[Name _Jepresion _________Junt _____[bedmas _Jrle _______|princple/oonmene |
9 hima Maximum depth of one layer iankmasd 11 |m | |
10 Auell Layer surface Ausnk m’ [n]
1 Vil Layer volume (variable) A Mg/ 1 = I
12 Lv Current volume of reactor LVigel] = 1 | [n; sum
13 . Maximum liquid volume Araok* Mianiomar m’

Help Unit Parameters Components Code Display Popup

+

Figure 9 Array rows in two tables: rows 5, 10, 11 contain arrays with their symbol ending in brackets and with
[n] in their Rule column.
The SMT will unwind an array row to a loop where the elements of the array will be
assigned to the right-hand side contained in the Expression column. In our example n is defined

as 9 meaning that all arrays with rule [n] have 9 elements. Row 5 for example will be unwound

as follows:
SV[1] = SV_0[1]
SV[2] = SV_0[2]
éQt9] = SV_0[9]

or more precisely to an equivalent loop. Note that the expression is also in array notation, i.e.
ending in brackets. Row 10 contains an example where every element of the array is assigned
the same variable (no array notation in the expression). As an exercise try to unwind the array
inrow 11.

The second option to define an array is to set the table type to Array in the table descriptor.
The SMT is prepared that the Expression column may be broken in several parts. Figure 10
shows an example of this array type.

14

[N] M aE w- = 1 Layered SBR with calculated DO.xlsx Q.- Search Sheet ©-
Home Insert Page Layout Formulas Data Review View 12 Share
Al5 = fx v
A 8 ¢ 0 E F G H I 1
135 |Qm Mixing flow out of bottom layer | Viw. ® Agn |m*d? | |
136
137 T I codelocation(integrated)
e iy oy [Name | [Expressionizton-1) ____Jexpressionn _[unit___Joecmals _____[Rule ___]Principle/comment __]
HiXissl1] > Xrsl23; ksl > Kl M
Joxrsl] Settling flux of suspended solids (v [1]*Xrss[1 10, [2] *X1ss(2])/2.0; (v [1] X[+ [1+1]*Xres [i+1])/2 oo s i
minv (11Xl 11 0: minu i} Xeselil:
139 Vs [2] Xrss(2])) *Asager[1] Vol 1] X5 [141]))*Arayerli]
140))
141 Codelocation{integrated)
T fome ———Jopresion o edimas e |Prindple/ommen |
143 |decant.a Decant flow Qaesrs + Qovertion g’ | |
144 luflow.a RAS flow Qune e 0 I [

Help

Unit

Parameters Components Code

Display

Popup +

Figure 10 Array table type beginning in row 137 ending in 139.

In this array type a more fine-grained unwinding process can be specified; for example, the

first and the last element will be assigned different values compared to the rest of the array:

Js.xrss[1]
Js.xrss[2]
Js.x7ss[8]
Js.x1ss[9]

content of the Expression 1 column
content of the Expression i(2 to n-1) column where i is 2

content of the Expression i(2 to n-1) column where i is 8

0.0

Please note that indexer variables (i in the second Expression column) can be used only in

their column, constant indexers can be used in all Expression columns (for example the first

Expression column contains Xrss[1] and Xrss[2] but Xrss[n] could be used as well).

The third option is the so-called composite array. It is like the previous one, but the

unwinding process is even more sophisticated. Figure 11 shows an example of a composite

array table taken from the MBBR with fixed film thicknes.xlsx.

ede OEw-Jd ~ o MBER with fixed film thickness.xlsx Q- Search Sheet ©-
Home Insert Page Layout Formulas Data Review View 12 Share
A163 . fi v
12 A B c D E F G H]
=
1 Amy [PN cocelocationi ntegrated)
PN o Tname Jooesioni oxresonz [ersioniiaton Juie [oecmas JRde |princpie/omment |
140 Influent inp.F_sv pd’
141 |Effluent -outp. F_SV gd’
142 |MODEL SV.Name diffusion dMdiff,5v(1) dM,diff,5V[2] M diff,5V(i] gd’ Exempt(H)
143 MODEL SV Name conduction [dM,cond,SV[1] dM,cond,SV[2] dM, cond, S V[i] pd’ Only(H)
144 MODEL SV.Name transfer o 0 0 gd’
145 Biological reaction rate rateF_5V[1] rateF_5V(2] rateF_SV[i] g.d” Reactive
146 |dMSV() MODELSV. balance in gd’ [n); Phase(L); Particle size{S)
© 147 Influent inp..F_sV ed’
© 148 Effluent -outp..F_SV g.d’
© 149 |MODELSV-Name diffusion dM,diff, 5V (1) M, diff,5V[2] AMdiff,5V[i] gd?
150 Biological reaction rate rateF_SV[1] ratef_sv[2] ratef_SV[i] gd’ Reactive
151 |dMSV | MODELSV.Name mass balance in compartments ed’ [n]; Phase(L}; Particle size(C)
152 Influent inp..F_SV gd’
= 153 |Effluent. -outp..F_SV gd’
154, from bulk phase -F,att,5V[1] Fattsv(1] gd’
* 155 Detachment ta bulk phase F,det,5V[1] -F,det,5V[1] gd’
156 |Internal solids transfer dM,str,5V(1) M, str,5V[2) dM,str,5V[i] gd?
- 157 Displacement of particulate components dM,dpm,5V[1] dh,dpm,SV[2] | dM,dpm,SV[i] gd’
158 |Biological reaction rate rateF_Sv[1] ratef_sv[2] rateF_Sv[i] gd’ Reactive
159 |dMsV(] IMDDEL‘SVNamema% balance in compartments gd’ [n]; Phase(L); Particle size(X)
160
Help Unit Parameters Code Display Popup +

Figure 11 Composite array, the terms in the rows without symbol are summed by Expression columns.

The rows with empty symbol define summation terms for all elements of the array. The

array variables are identified by a non-empty symbol and a [n] rule in rows 146, 151, 159

respectively. The result of unwinding the first array is as follows:

15

dM,SV[1] = (inp..F_SV + (-outp..F_SV) + ... + rateF_SV[1])
dM,SV[2] = (dM,diff,SV[2] + @ + rateF_SV[2])
dM,SV[4] = (dM,diff,SV[4] + @ + rateF_SV[4])

if the array size n is 4 in the example and the summation terms of the first array are taken from
rows 140 to 145. As the example shows, multiple composite arrays can be defined in a single
table. Sometimes it is worth to split the arrays in separate tables, for example the last array
could be extracted in its own table, resulting in an opportunity to simplify the original one. It is
obvious that Expression 2 and Expression i(3 to n) columns have the same terms for the first two
arrays, so they could be combined in a single Expression i(2 to n).

Every summation term row may contain filtering rules influencing the resulting sum (see
section 5.2.1 Attributes to learn about attribute filtering). In the example the last term,
ratefF_L.SV[i] is included only in case of Reactive process units.

3.1.3 if block

Conditional execution of program code is another important element of a programming
language. In SumoSlang condition execution is declared in tables with type if block. Figure 12
shows an example of if block taken from PID controller.xlsx.

ece
Home

if black

22 if

Insert

O Ew-d

Page Layout
fx

c

InSteady && control == 1

Formulas

D

v -

Data Review View

E

Controller code in steady state mode
Name |

PID controller.xlsx

F

Codelocation(Integrated)
Expression

@-

L2 Share

G H 1

lunit____|pecimals__[Rule ___|Principle/comment ________|

CVerr

Controlled variable error

Vo - OV

CVunit

else

dMV_dt
My

Manipulated variable unbound change
Manipulated variable

|direction * Kp s * CVarr
Hardbound(MV + dMV_dt; MVyyin; MVira)

Mvunitd™®

MVunit

CVerr

Controlled variable error

Ve

CVunit

dMV_dt
MY

Manipulated variable unbound change
Manipulated variable

|dMV_dt

MV

Mvunit.d™
MVunit

Unit Parameters Code

Help

Display Popup +

Figure 12 Example for if block table.

This table type has some additional columns before Symbol, namely Operator and Condition.
The Operator column may contain only the keywords if, else if, or else. An if operator
always should have a matching else or else if pair and the symbols in their code rows should
be the same (see the symbols in rows 23-25 and rows 27-29).

The Condition column contains relational operators similar to the C language with one
exception: the assignment symbol = is recognized as the equality operator ==, meaning that in

the example control = 1 would be the same as control == 1.
Nested if blocks are supported too, in that case there are many numbered Operator columns

before the Condition column.

3.1.4 C++code

Process code may include blocks of raw C++ code to perform calculations that are clumsy or
impossible in SumoSlang. The Sumo variables used as input arguments by the C++ code are
listed in the Inputs column, while the generated output variables are listed in the Outputs
column.

16

The range of a C++ code table type is determined with help of the Inputs keyword (used like
Symbol in simple tables) and the Expression keyword. The table ends at the row of the last non-
empty cell in the Expression column.

The code in the Expression column may contain variables with a NAMESPACE___ prefix. This
prefix will be replaced by the SMT with the namespace of the process unit (see chapter
7 Namespaces).

eoe O E o~ v 0" Layered SBR with calculated DO.xIsx Q- Search Sheet ©-
Home Insert Page Layout Formulas Data Review View L Share
AB12 . fr v

A B c D E F G H
615

616 m Sludge blanket height calculation Melmﬂ[ﬂlnulnwd?
617 P Outputs ([Expression Nnit Decimals Rule Principle/comment

618 XTSS[] NAMESPACE__huanie: = 0.0; [n]
619 hiayerl] for(int i = NAMESPACE__n-1; i = 1; i) T
620 [¥iss i blarer {

621 by e if{ NAMESPACE__ Xpss(i) > MAMESPACE_ Xrss rin, blanket)
622 L {

623 f{ NAMESPACE_ Jrssfi-1) <= NAMESPACE_ Xrss i pianiet)
624 {

NAMESPACE__hysyeps: =
NAMESPACE__by,ye (I1+NAMESPACE __hy_ 1y "(NAMESPACE __Xys5 win tisnket™
625 NAMESPACE_ Xrss(i))/(NAMESPACE_ Xrss(i-1)-NAMESPACE_ Xrss(i));
626 break;

627 }

628 else

629, {

630 NAMESPACE __hiyueker = NAMESPACE__ iy i-1) + NAMESPACE__hy nas/2;
631 }

632, }

633)
634

Help Unit Parameters Components Code Display Popup 45
Ready L

Figure 13 C++ code example. The code lines in the Expression column are included in the generated XML after
proper namespacing.

3.2 Table descriptor

Table names are part of the table descriptor range and on the Parameters worksheet (model or
process unit) they should be unique. This is also true for tables with the same table type (if
block, Array etc.) on the Code worksheet.

3.2.1 Tabletag

This is the third section of the table descriptor right after the table name. It may contain table
grouping information like Codelocation (which is a keyword) or code filtering information. The
latter is an arbitrary text that can be used in the Rule column of an expandable code line to
restrict the expansion from tables with that text in their table tag (see 5.3 Mechanism of
expansion).

In the process code library provided by the Sumo software the most used table tag is
Codelocation and Type(...).

Type is used in model files for example to group different equation types (kinetic,
stoichiometric, equilibrium, energy) on the Calculated variables worksheet. Type and its
arguments are not keywords; the process code author can define arbitrary grouping texts which
can be used in process units.

Figure 14 shows the Calculated variables worksheet of a model file with Type(Kinetic)
groups. This group identifier is then referenced in the Rule column of a code line in a process

17

unit meaning that the equations from all Type(Kinetic) tables will be included from the model

(see also 5.2.3 Non-keyword rules).

eve O &E w- i Sumo?.xism Q- Search Sheet @-
Home Insert Page Layout Formulas Data Review View 1 Share
B3g - fe symbol v
A 8 c o E F G
£ -_— ﬁ
37 [Oxidation-reduction potential | Ty i) 4
a8 | Symbol Name b 7 Value Unit Decimals Rule
13 ORPy, Oxidation-reduction potential due to dissolved oxygen OR Py ORP s~ OR Paaga)* S/ (Konp scrtSiz) 285.4 myv
w0 [9RPu Oxidation-reduction potential due to dissolved nitrate OR Py ORP 10 OR P S (Kot w0t 5] 62.7 v
P Onidation-reduction potential due to dissolved methane ORPyy.e*Scuel (Koms o + S 2.0 mv
a2 |orp Oxidation-reduction potential Max| OR oz, ORPyo. ORPou) 2854 my
43
4 Precipitation/redissolution rates | Jrypetkinetic }
45 |symbol Name pression Value Unit Decimals ___|Rule
6 PrecipDrivingForcesry Rate expression of struvite precipitation (driving force) (Mg ™K, T * (20T K P K) |-095 Unitless 2 pH; Preci|
47 PrecipDrivingForcesry Rate expression of strunite precipitation (driving force) 0 0 Unitless 0] oH; Non-I
« oncepts Parameters Model oH Species Components Calculated variables
B B M - (] + 10%
o0 e (i I e AL o Simple CSTR.xlsx Q.- Search Sheet S-
Home Insert Page Layout Formulas Data Review View 12 Share
AS2 : fi v
A B c D E F [H 1 1
sa Calculated variables
55
56 Kinetic calculated variables | codelocation(integrated)
57 [symbol [Name Expression Tunit [Decimals _|Rule Principle/comment
58 VAR |MODEL.CVAR.Name MODEL CVAR Expression MODEL.CVAR.Unit | e; Type{Kinetic)
59
50 [remperature | codelocation(integrated)
61 Symbol _|Name Expression Tunit Decimals _|Rule Principle/comment
62 CVAR MODEL.CVAR.Name MODEL.CVAR.Expression IMOULL CVAR.Unit Type(Energy)
63
64 Stoichiometric calculated variables | codelocation(patacomm)
65 Symbol |Name |expression |unie |Decimals |Rule |Principle/comment |
Help Unit Parameters Code Predefined charts Display Popup +

Figure 14 Type(...) table groups in a model file and referencing them in the Rule column of a process unit

Codelocation is used for grouping process unit code in groups (ZeroTime, DataComm etc.)

described in section 3.1 Table structure. The previous example shows two Integrated and one

DataComm code location in column D of the visible tables. The grouping, which becomes

important in simulations, will be reflected in the generated XML file.

[RoN X] Windows Server 2016 v &
File Edit View Project Debug Team XML Tools Test Analyze Window Help |2 Full Screen ¢ & Quick Launch (Ctrl+Q) £ signin

mle-sumolxml # X

<?xml version="1.0" encoding="utf-8"2>

2 <!--Translator settings: sort = True-->
3 E<model>
4 @ [variabledefinitions>...</variabledefinitions>]
<codeblocks>
kblock name="Functions™>...</blocks]

<block name="Unspecified" />

<block name="Event" />
<hlock name="RuleBase" />
<block name="Final" />
<block name="Energy" />
</codeblocks>
</model>

¥

1 Add to Soures

ontrol &

Figure 15 The generated XML file with collapsed nodes for better overview.

18

Figure 15 shows an overview of the generated XML file with collapsed nodes except the main
<model> node and <codeblocks> where the code locations start in row 10759. Code locations
with content inside are collapsed in the example.

The Codelocation may specify multiple code blocks together with code sections. The syntax

is as follows:
Codelocation(block[,section] .. [;block[,section]])
where

e Dblock—is the code block name

e section—is the code section name under the block node
e , —is the section separator

e ; —is the block separator

"__ 7

Elements in brackets are optional. If section is not specified, the default “1” to “n” is used.
If multiple distinct blocks are listed as arguments, the code lines in that table will be repeated in
the XML within those blocks.

3.3 Generating the intermediate XML file

The project assembled in the Sumo modeling software contains the model, the process units and
other settings. The Excel file format representing the process code is just a convenient, user-
friendly format to store everything needed by the software.

The equations contained in the Excel files are translated by the SMT to an intermediate
XML format which contains the instructions for the Sumo numerical engine to perform the
simulation. The XML file then is transformed to an actual executable file usable by the Sumo
numerical engine.

The SMT is used by Sumo automatically, but it can also be used manually. In the latter case
the user should provide the Root element, discussed in section 2.4 Process unit hierarchy, of the

project which contains the structure of the modeled plant.

19

4 Basic language
elements

The following subsections contain the various SumoSlang elements in greater detail with

examples.

4.1 Assignments

The most fundamental element of the SumoSlang is the assignment. Section 3.1.1 Simple table

presented how an assignment is specified in a simple table. Figure 16 shows the table Gujer

matrix on the Code sheet of a process unit.

e0e M E w- 5 o Layered SBR with calculated DO.xlsx Q- Search Sheet =

A2

Home Insert Draw Page Layout Formulas Data Review View 12 Share

fx v

B c D E F G H

us Biokinetic reactions

119
120
121
122
123
124
125

Em_ Codelocationfintegrated)
.| MODEL Model.Na |MODEL Model.Rate() MODEL Model.Un Reactive;[n]; Non-Palymer
mosersull v coefficient Reactive;[n]

ute_SVI] MODELSV.Name rate hecoeLmomisvl] * Pucoruweseiill |g.md sum(MODEL Model j); Reactive; [n]; Non-Polymer

126 Settling

127

128 Codelocation{integrated)

... o — | o0 |
Help Unit Parameters Components Code Display Popup 4

Figure 16 Table containing assignments on the Code worksheet.

From the example the following information can be extracted:

it is a simple table (no table type)

the table represents the group of assignments named Gujer matrix

the assignments will end up in the Integrated code location in the generated XML file
the elements of the assignments are contained in the Symbol and the Expression columns.
The three assignments in the example are:

O IMopEL.Model.j[] = MODEL.Model.Rate[]

» the Unit of the left-hand side variable is coming from MODEL .Model.Unit
(see 5.1 Expandable symbols)
* it has two rules: Reactive and [n] (see 5.2 Rules)

O VMODEL.Model.j,SV[] = MODEL.Model.SV[]
= it has two rules: Reactive and [n]
o rate_SV[] = VwopeL.Mode1.9,sv[] * rmopeL.Mode1.5[]

= the Unit of the left-hand side variable is explicitly given: g.m-3.d-1
= it has three rules: sum(MODEL .Model.j), Reactive and [n]

20

The most important columns of the table from the point of view of an assignment are
Symbol and Expression. They contain the left-hand side and the right-hand side of the
assignment; the other columns contain auxiliary information (e.g. the unit or the different
filtering rules) used by the Sumo software.

The symbol on the left-hand side of the assignment is a variable while the right-hand side
may contain variables, numerical values or constants, string constants (literals), functions and
operators. Variable names should start with a letter, may contain numbers, comma characters
(,), single dot characters (.) or single underscore characters (_) and may have subscript or
superscript parts. The following variable name contains all the mentioned features:

Tlocal,max_Plz'Vl'e_X

Double dot (. .) and double underscore (__) are not allowed in variable names as they are

namespacing keywords (see 7 Namespaces).

4.1.1 Operators

The assignments may use the following arithmetical, logical and relational operators:

Symbol | Meaning

+ addition

- subtraction

* multiplication
/ division

A exponentiation
&& logical AND

I logical OR

! logical NOT

== relational Equal

I= relational Not Equal

< relational Less than

> relational Greater than

<= relational Less than or Equal

>= relational Greater than or Equal

Table 1 Operators of SumoSlang

It is worth noting that the SMT automatically provides protection against division by zero
errors by adding a very small number to every quotient.

4.2 Data types

The following data types are used in SumoSlang;:

e Integer
e Real

e Boolean
e String

e Dimension—array size by a given dimension (only one at the moment)

The data type of a variable by default is Real. There is no type inference from the right-hand
side (i.e. the SMT cannot determine the type of the left-hand side variable). The correct type

21

should be specified by the process code author in the Rule column of a given code line, using
one of the type names from the previous list.

4.3 Symbol roles

SumoSlang fits the symbols it finds in one of the following roles:

e Constant—various numerical constants (physical, chemical) used in calculations
contained on the Constants worksheet of the systemcode.x1sx

e Parameter—simulation parameters modifiable by the user of the Sumo software;
everything on Parameters worksheets except dimensions.

e State variable (5§V)—dynamic simulation state variables; every variable matching a
symbol found on the Components worksheet of either a process unit or a model. The
following conditions should be met also:

o the matching symbol on the Components worksheet of the model should have
Integrated handling (see 5.2.2 Handlings)

o a corresponding derivative of the symbol should be present in the process unit
code

e Derivative—derivatives of state variables; every variable with the symbol equal to
d<state variable>_dt where <state variable> is the place holder for a symbol with SV
role

e SystemState —every other variable has this role (a better role name should be found).

The role of the various symbols is carried on to the XML file and is used by the simulation

core of the Sumo software.

4.4 Functions

The Functions worksheet in systemcode.x1sx contains the function declarations used in process
code. The usual mathematical functions (more precisely their C++ name) are listed in a separate
table tagged as Pure. Functions in other tables are Sumo functions expressed in C++ code.

The function declaration (name and arguments) is in the Symbol column, its body is in the

Expression column. The syntax is the following:

[type][array_sign] name(
[type][array_sign] [name][;]
[type][array_sign] [name]..)

where

e type is one of the following keywords
o REAL—this is the default if type is omitted
o INT—Integer type
o BOOL—Boolean type
o STRING—String type
e array_sign is the [] character pair
e name—any name starting with a letter and containing letters, numbers or underscores
e ; —argument delimiter

The elements in brackets are optional. Where type is missing REAL will be used. The
following example shows the Average function declaration:

22

Average([] x; INT start; INT end)

where Average is the function name. The return type and array sign are missing which means
that the function will return a REAL number. The missing type specification and the given array

sign of the first argument x means that it is an array of REAL numbers. Both start and end are
integer numbers.

23

5 Advanced language
elements

The following sections describe how process code can be written in a very terse form. Terseness
is achieved by the introduction of so-called expandables and filtering rules. Without these the
process code would be much larger and more verbose. To see the difference, one can compare
the Code worksheet of a process unit with the generated XML file which contains the fully
expanded version of the process code.

5.1 Expandable symbols

The SMT recognizes variables written in a special, abbreviated or shorthand notation. During
translation, these are replaced with a set of symbols contained in the process model. This means
that instead of one code line there will be n code lines where 7 is the number of symbols
included by the process called expansion.

The process code shipped with the Sumo software provides syntax highlighting of
expandables as Figure 16 shows SV and the triplet of symbols starting with MODEL are colored
blue.

511 SV

SV stands for state variable. A symbol containing this shorthand will be replaced with a set of
symbols from the Components worksheet of the model. This set may contain all symbols from
the model or a subset of them. Various filtering methods are available to specify which state
variables are needed (see 5.2 Rules).

For state variables, besides rules, an alternative filtering method is available to write terser
process code. These shorthand notations are also recognized by the SMT:

L.sV—selects liquid phase state variables

e G.SV—selects gas phase state variables

S.SV—selects solid phase state variables

e ssV—selects dissolved components (or small particle size state variables)
e cSV—selects colloidal components

e xSV—selects particulate components

The phase and particle size shorthand are composable (in this order). L.sSV for example
means liquid dissolved components. These are keywords and the L, G, S, s, ¢, x prefixes are not
taken from the content of the Phase and Particle size columns (please note the case difference of s,
C, X).

The SV expandable is a shorthand of the MODEL.SV.Symbol notation (see 5.1.5 Triplet
notation). Note that L.SV can be replaced with the rule Phase(L) and xSV with the rule Particle
size(X), (see section 5.2.3 Non-keyword rules) while the Symbol column would simply contain
SV. In case of rule filtering, the argument of the rule should match the content of the Phase and
Particle size columns (L, G, S in case of phase and S, C, X in case of particle size). If the column

24

Phase would contain solid, the rule would be Phase(solid) while the shorthand filtering
method still would be S.svV.

It is important to mention that this alternative SV filtering method (L.SV, xSV etc.) works
only with default models i.e., the first model attached to the process unit (see 8.1 Default
model). If more than one models are attached to the process unit and the process code author
wants to reference state variables from the second (third etc.) model, the full triplet syntax
should be used, and the filtering should be implemented with rules instead of a shorthand. For
example, L.SV in MODEL_2 should be written as MODEL_2.SV.Symbol with Phase(L) rule.

5.1.2 PAR

PAR stands for parameters. This shorthand is replaced by symbols found on the Parameters
worksheet of a model file like in the case of state variables. These are simulation parameters
available to the user of the Sumo software for modification.

Filtering is possible by specifying a Type(...) selector in the Rule column in the process unit
because the tables on the Parameters worksheet are grouped in Type groups.

PAR is a shorthand of the MODEL . PAR. Symbol triplet notation.

5.1.3 CVAR

CVAR stands for calculated variables. This shorthand is replaced by symbols found on the
Calculated variables worksheet of a model file. Filtering is the same as in case of PAR shorthand:
use a Type(...) selector in the Rule column in the process unit.

CVAR is a shorthand of the MODEL .CVAR. Symbol triplet notation.

5.1.4 SPC

SPC stands for species. This shorthand is replaced by symbols found on the Species worksheet of
a model file. As Species contains a simple table without any grouping, the whole list of symbols
is “pulled in” during expansion.

SPC is a shorthand of the MODEL . SPC. Symbol triplet notation.

5.1.5 Triplet notation

The triplet syntax allows a general way of referencing model parts in process code. This
notation always has three elements:
e model identifier —represents the model ID or model variable name used on the Unit
sheet of a process unit. This allows a name-independent reference to the model used by
a process unit. Note that MODEL is not a keyword, it can be PANCAKE for example, if that ID
is used on the Unit worksheet of the process unit to identify a model.
e worksheet name—selects a worksheet in the model file. Shorthand notation (SV, PAR,
CVAR, SPC) or explicit names are allowed. The worksheet name may contain whitespaces.
e column name—selects a column in a code table. Shorthand notation or explicit names
are allowed. If the column name contains white spaces the whole triplet should be
placed in quotation marks (e.g. “MODEL.PAR.Low 1imit”).

Figure 16 contains various examples of the triplet syntax usage. These are:

® ruooeL.model. [] —Where the subscript index of the variable r will be replaced with symbols
taken from the default model file, worksheet Model and column j.

e MODEL.Model.Rate[] —where the expression will be replaced with symbols taken from
the model file, worksheet Model, column Rate.

25

e MODEL.SV.Name —where the expression will be replaced by symbols taken from the
default model file, worksheet Components, column Name. Note that the context of the Sv
shorthand is recognized, it represents a worksheet name, and it is replaced accordingly.

e MODEL.Model.SV[]—where the expression will be replaced with symbols taken from the
default model file, worksheet Model, column name equal to symbols from the
Components worksheet. This is a tricky expansion (see more in 5.3 Mechanism of
expansion).

As the introduction of section 5.1 explained: the expansion means replacing one code line

with many code lines.

5.2 Rules

The predominant usage of rules in process code lines is filtering equations “pulled in” from the
model or other process units. Data types may also be specified in rules (see 4.2 Data types).

Filtering capabilities are related to attributes and handlings specified in process units
(model files do not contain a Unit worksheet with attribute and handling specifications).

The evaluation of the Rule column results in a single Boolean value. If true, the code line (or
its expansion) will be passed otherwise not.

The Rule column may contain several distinct rule elements separated by a semicolon. The
rule result will be the composition of the partial results with the AND relational operator.

5.2.1 Attributes

Attributes are user defined symbols on the Unit worksheet of process units, or columns of the
Unit component table on the Structure worksheet of a composite process unit. The attributes can
be used in the Rule column of code lines (process unit or model) to skip some of them during
expansion.

Attributes have an implicit Boolean data type. The SMT takes their value, or their negated
value if they have a Non- prefix, to evaluate the rule in a given code line.

Section 2.4 Process unit hierarchy described parameter inheritance in a nutshell. Figure 17
shows how it is implemented with the help of attributes. Parameter inheritance means model
parameter inheritance (there are other parameters defined in process units). Model parameters
can be altered by process units and their children (if any) may want to specify which model
parameters they need, hence the need of the two different inheritance methods.

The Rule column of row 117 on the Parameters worksheet contains a Non-InheritkinPAR
attribute while row 468 on the Code worksheet contains its counterpart, InheritkinPAR. The Unit
worksheet of the process unit contains the definition of the InheritkinPAR attribute defaulting
to TRUE.

Please note that the Default column of the inheritance table on the Parameters worksheet
contains a reference to the model: MODEL . PAR.Default which means that model parameters in
the process unit will be equal to values coming from the model. (This is shown with the dark
green line on Figure 6.)

On the other hand, the Expression column on the Code worksheet contains a reference to the
parent process unit: Parent. . PAR which means that model parameters in the process unit will be
equal to values coming from the parent. (This is shown with the light green line on Figure 6.)

26

When InheritkinPAR is TRUE (inheritance ON) the code lines from the Code sheet prevail,

otherwise the code lines from the Parameters sheet (the Non- prefix means negation as described

before). Quite simple.
It is worth noting how with a few lines of code the process code author can refer to a large
number of code lines from the model, tailoring them as he or she sees fit.

e0e MmME w3 + 0 Layered SBR with calculated DO.xlsx Q. Search Sheet ©-
Home Insert Draw Page Layout Formulas Data Review View 1 Share
AlL0 + S v
A B ¢ D E £ [H 1
s
15
LN svmbolJrame _____________Joetaur ____Jiowimit _______Juighuimit ________Junt _____Jecimas Jrue __________________|princip
17 PAR MODEL PAR Name MODEL.PAR.Default |"MODELPAR.Low limit" |"MODELPAR.High limit" | MODELPAR.Unit Reactive;Type(Kinetic);Non-InheritkinPAR
118 PAR |MODEL PAR Name |MODELPAR Default |"MODELPAR.Low limit® | "MODELPAR.High limit" | MODELPAR.Unit | i o) R
119 PAR MODEL.PAR Name MODEL.PAR.Default |"MODEL PAR.Low limit" |"MODELPAR.High limit" | MODELPAR.Unit InheritequPAR
120
121
I svmbol___Jname ____________________Joetaur _____wowimi ______Juighimie _____Jume __Joecimals Jrae ___________________[rincio
123 Mriocrmosaer | Floceulation factor under aerated conditions 025 0 1 unitless 2 Onlyre
124 Mot procesonser_ Flocculation factor under non-aerated (mixed) conditions |0.5 0 n unitless 2 [Onlyre
125, Mroceroemaa: | Floceulation factor in statie blanket 0.75 0 1 unitless 2 Only re
126
127 T
Help Unit Parameters Components Code Display Popup +

ir

Ready Calculate

e0e O E v 5 i Layered SBR with calculated DO.xlsx Q- Search Sheet =
Home Insert Draw Page Layout Formulas Data Review View 12 Share
A2 : fi v
A 8 c D E F G H

463

154 Model parameter inheritance

465

466 [P SN cocelocation(ntegrated)

468
469
470
a71
an
473
a4
475

[Decimais

PAR MODELPAR.Name Parent..PAR MODELPAR. Unit Reactive; Type(Kinetic); InheritkinPAR
PAR MODELPAR.Name Parent..PAR MODELPAR.Unit [TypelStoichiometric]; InheritstaPAR
PAR MODELPAR.Name Parent.PAR MODELPAR.Unit T ibrium); InheritequPAR

CodelocationlIntegrated)

Name ____________epression ______June _______Joeamals _Jrae |
|decant..par | MODELPAR.Name in decant |Par |moDELPAR.UAIL | T iometric} |
|decant..par [MODELPAR Name in decant [pag [mopELpaR.Unit | TvoelEauilibrium] |

Help

Unit

ir

Parameters Components Code Display Popup +

Ready Calculate

Figure 17 Parameter inheritance implemented with attributes on the Parameters and Code worksheets.

5.2.2 Handlings

Handlings specify how state variables should be treated during dynamic simulations. This is a

filtering method of code lines in process units. They are defined in the Handling column on the

Components worksheet of models.

Handlings may have one of the following values:

Integrated
o The Component marked as “Integrated” will be declared as a true State Variable
and will have a derivative. This is the default for most components in a dynamic
model.
Set
The Component marked as “Set” will become a parameter, will not have a
derivative. An example is DO — when just an input value is desired (e.g. 2 mg/L),
it is not necessary to design and tune a controller, but change this Component to
Set and assign a value.
Algebraic
o The total rate (vi*rj) will be calculated (e.g. total CO2 production rate) without
integrating the variable itself, so it is not present in the code.
Balancing

27

o State variables with this handling are not taken in consideration during
expansion, they are simply used to mass balance the model components in the
model Excel sheet. An example is N2 —if dissolved and gaseous nitrogen is not
important from the process standpoint but it is important to see that the N
balance closes, Balancing rule can be used. The variable will not be present in the
final compiled code.

These are the default handling values of state variables. The default values can be changed
on the Unit and Structure worksheets of process units. The handling symbols specified in the

process unit refer to state variables present in the model.

5.2.3 Non-keyword rules

Section 3.2.1 Table explains the usage of Type(...) table grouping info in tandem with a Type(...)
rule. The rule is an example of the more general table descriptor rules, namely the Type(arg:; ..
argn) construct. This kind of rule allows code lines to be included from all tables matching the
arguments. The source of the inclusion is usually the model, but it can be the parent or other
direct child process units.

The Handling(..) rule is an example of the more general table header rules. A table header
rule consists of a column name and an argument list representing distinct values from that
column. The context, i.e. the worksheet where the column should be present, is determined by
the SMT from the Symbol column of the process unit code line.

Figure 18 shows an example of table header rule in row 5 of the Code worksheet of a process

unit.
ece O &E w- 5 f Layered SBR with calculated DO.xlsx Q- Search Sheet ©-
Home Insert Draw Page Layout Formulas Data Review View 12 Share
A19 . fie .
LA 8 c D E F G H
Initialization

SV Initialization Codelocation(ZeroTime)

(Operational parameter initialization [ZTELZUEL P]
fsymbol _____JName _____________Jexpression ______Junt ______Joecimats Jrue |
Peani a1
Acarc
Arari * Niecare / 1

1

2

3

4 o p

5 |svn MODELSV. Name concentration |sv_on |moDELSV.URit | [n]; Handling(Integrated) Initialize state variables
6

7

3

9

s Maximum depth of ane layer
In]
|in)

Help Unit Parameters Components Code Display Popup +

[|Layer surface i

m
LVigyarl] Layer volume (variable)

m

Ready Calculate 1T

Figure 18 Handling(...) rule in row 5 of the Code worksheet.

The worksheet referred is Components of the model file because the Symbol column contains
an SV (see 5.1.1 SV). The column name in the table header should be Handling and its content
Integrated. The SMT will include only the rows where Handling contains the value Integrated.

It should be mentioned that in case of the worksheet contains multiple tables, all tables
would be parsed by the rule, but only rows from matching tables (having Handling column) will
be allowed.

If the Hand1ling(. ..) rule contains more than one argument, all model rows with a
matching Handling value would be allowed in the expansion. This means an OR relationship

between the rule arguments.

The SumoSlang is flexible enough to let the user define arbitrary table descriptor (mostly table
tags) or table header rules. It is important to mention that Type and Handling are not keywords

28

in SumoSlang (note, however, that Handling appears as table type keyword on the Unit
worksheet of process units). Any rule written in a function syntax, i.e. name(arg:; .. arg), is
tried to be interpreted as a table descriptor rule then a table header rule. This allows the user to
introduce other grouping and filtering names than those supplied with the Sumo process code.

5.2.4 Exempt, Only

These two keywords are explicit symbol filters during expansion. They take a list of symbols as
arguments and may contain expandables.

Exempt excludes the assignments resulting after expansion which have a left-hand side symbol
listed in the arguments.

Only includes the assignments resulting after expansion which have left-hand side symbol
listed in the arguments.

The following example shows a model which has some gas phase state variables and a
hypothetical process unit using Exempt(...) and Only(...) rules to skip or include some of
these state variables.

ece O Ew- & Sumo'.xlsm Q- Search Sheet @-
Home Insert Draw Page Layout Formulas Data Review View 12 Share ~
H58 = fr 83.626 v
A 8 c D E F G H 1 Il K L ™M
[Mlﬂn+¢m] [Check Components.]
1
2 | companents
3 Name Influent Initial concentration | Activated sludge Digester Biofilm Sidestream Separators Low limit High limit Unit
59 Carbon dioxide gas (CO;) 0.025 0.100 0.054 0.800 0.100 0.100 0.100 MinstateVar | Maxstatevar | g TICm”
60 Methane gas (CHe) NonDetect 1.00E-50 0.001 4.300 NonDetect NonDetect NonDetect MinstateVar | MaxStatevar | gCOD.m™
61 Hydrogen gas (Hy) NonDetect 1.00E-50 0.050 1.100 NonDetect NonDetect HonDetect MinStateVar | MaxStatevar | §CODm”
[7] Oxygen gas (0;) 1.500 1320 1300 NonDetect 1.320 1320 1.320 MinStateVar | MaxStateVar g 0.m”
63 Guss Ammonia gas (NH;) NonDetect 1.00E-50 NonDetect 0.150 NonDetect NonDetect NonDetect MinstateVar | MaxStatevar | g N.m’
64 Gra Nitrogen gas Ny} 4.880 4.880 4.900 0.300 4.880 4.880 4.880 MinstateVar | MaxStatevar | BN.m”
65 Geosm Carbon dioxide gas (C0;) 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0 100 /v
Help Concepts Parameters Model pH Species Components Calculated variables +

e0e M Ew-d - o Fictive Layered SBR with calculated DO.xlsx Q- Search Sheet S-
Home Insert Draw Page Layout Formulas Data Review View Developer Add-ins 12 Share ~
A355 . fr v
A B c D E F G H
361 Saturation concentrations for bubbles Codelocation(integrated)
PN o fname Joprewon Junk [Decmais [t [Princpie/comment
[n]; Reactive;
MODELSV.Name saturation concentration Handling(Integrated;
St 5w * Partsttut o sull/Coaar * Henrye sy(Tell) * MMeg s, * P
simnssll ot o bubble interface @ field conditions. | © Pesubsill/cessar * Henry (Tl ks Qs gm Algebraic; Set);
363 Exempt(Geoz; Gua)
[n]; Reactive;
MODELSV.Name saturation concentration .
Handling(Integrated;
Scsusunasall |at gas bubble interface @ standard (NTP) B * Potputcsvstoll/coasar* HenesTuma) * MMz * ea g™ 2 Algebraic Set):
conditions T
364 Only(Geoa; Grua)
365
366 For the atmasnheric saturation cancentration calrulations we need the eomnasition of the atmnsohere araund the water surface.

Help Unit Parameters Components Code Display Popup +

Figure 19 Exempt and Only rules in action.

The model in the example contains 6 gas phase state variables (in rows 59-64). The
Exempt(GCO2; GNH3) rule in row 363 results in the following expansion of the symbol:

SGCH4, bub, sat []
SGHZ, bub, sat []
SGOZ, bub, sat []
SGNZ, bub, sat []

29

while the symbol in row 364 will be expanded in the following variables:

S6co2, bub, sat[|
SGNH3, bub, sat[|

5.2.5 Otherrules

Other less commonly used rules are:

e Step(arg)—in case of array assignments it specifies the incrementation step of the loop
variable (as in section 3.1.2 Arrays was described, the elements of the array are assigned
in a loop). The step can be positive or negative.

e Call—used in event handling (see 6.4 Event handling)

e sum—array summation. The following example shows how to calculate the sum of array
elements given in the Expression column into scalar variables given in the Symbol

column.
eve O a wv- ¥ © Layered SBR with calculated DO.xlsx Q- sum o ©-
Home Insert Draw Page Layout Formulas Data Review View Developer Add-ins 12 Share
A562 . fr v
A 8 c D E F G H
200
567 Codelocation(ntegrated)
CCT svebol Name _________Jepesion ________Junit ____Joedmais _Jrule ______________|Principle/comment
569 M supota | Total MODELSV.Name mass [mM_Lsviy 2 [n]; sum

570 [| Total MODELCVAR.Name mass [M_cvarn e [n]; sum; Type(Stoichiometric)
571

572 Mass flows and rates
573

574 Codelocation(ntegrated)
575 T [S 7 [Decimals _Jrule _______________[Principle/comment
576 ‘decanL.F‘w |MODEI.SV‘Name mass flow in decant output ‘efffoll * decant..Q * SV[] _g.d" | _[n]; sum; Phase(l) |

577

Help Unit Parameters Components Code Display Popup +

Figure 20 Code lines with sum rule stating that all elements of the arrays given in the Expression column
should be added. The symbol in these cases represents a scalar variable.

e sum(arg), mul(arg)—summation, multiplication of expansion terms (see section 6.1
Summation, multiplication)

e sum(<number>)—array initialization rule with additional distribution handlings. This
rule distributes the values of the array so that their sum will be equal to the specified
<number>. This rule is meant for the simulation engine and instructs it how to set the
initial values of array elements. There are four auxiliary keywords to this sum(n) rule
known as handlings:

o Free—specifies that the elements of the array can be distributed freely to obtain
the desired sum

o Head—specifies that the first element should be equal to the sum (the remaining
elements will be 0)

o Tail—specifies that the last element should be equal to the sum (the remaining
elements will be 0)

o Equal—specifies that the elements should be distributed evenly to give the
desired sum

e For example an array may have the following rules: [n]; sum(1); Equal. The sum(1)
and the Equal parts instructs the simulation engine to distribute the array elements
evenly so that their sum will be 1. If n is 4 the elements of the array will be [.25, .25,
.25, .25]. The array initialization and distribution rule are handy shortcuts.

30

5.3 Mechanism of expansion

Section 5.1 Expandable symbols listed the available expandable shorthand and triplet notations
and discussed how with the help of these symbols shorter and terser process code can be
written. This section describes how the shorthand symbol replacement works, the rules
governing the process, giving detailed examples. The transformation of expandable symbols to
the final variable names needed in calculations is called expansion.

5.3.1 Simple expansion

The expansion is always driven by the content of the Symbol column of code tables, meaning
that it selects the set of symbols used in expansion from a model worksheet. These symbols then
will be the base of expansion for other columns which effectively means that expandables in
other columns should match the Symbol column.

Figure 21 shows a simple case, where row 5 contains various state variable shorthand

MODELSV.Unit

elements.
[N] O E wvu- - 0" Layered SBR with calculated DO.xlsx Q. Search Sheet ©-
Home Insert Draw Page Layout Formulas Data Review View Developer 12 Share
A19 . fe N
A] c o 3 F G H I
1 | Initialization
2
3 Codslocation{zeroTime)
5
6

|svin | MODEL5V.Name concentration |sv_of] |In]; Handiing(integrated) |initialize state variables

Codelocation(ZeroTime)

Uit oecmals e [piocplofommen |
Maximum depth of one layer m
Layer surface [m Inl
Layer volume (variable} Ak * hasare/ 1 _m’ | [n]

LVisyerll

Parameters Components Code Display Popup +

Help Unit

Figure 21 SV shorthand example in row 5.

Taken Sumol as model, Sv[] will be expanded by replacing it with all symbols taken from
the Components worksheet of Sumol, transforming that single row into the following table:

Nr. | Symbol | Name Expression | Unit
1 | Sveall Volatile fatty acids (VFA) concentration | Svra_0O[] g COD.m-3
55 | HIlI Enthalpy concentration H_O[] MJ.m-3

Table 2 State variables after simple expansion.

As mentioned before, the expandables in columns other than Symbol should match, because
values are taken from the same worksheet and the same row as Symbol specifies. In the example

this condition is met because:

e the Name column contains a triplet expandable which instructs the SMT to take a value
from the model file, worksheet Components, column Name, and the row specified by the
current symbol (Svra through H)

e the Expression column contains an SV expandable which instructs the SMT to take a
value from the model file, worksheet Components, column Symbol

e the Unit column is like Name, but using the Unit column from the model

31

This simple case is spiced a bit with a Handling(Integrated) rule which tells the SMT to
include only those rows from the model that have Integrated in their Handling column. These
are the state variables from Sy¢a to H. The replacement content is shown in blue.

The expansion would be impossible if a non-Symbol column would contain a non-matching
expandable, for example if Name would contain MODEL . CVAR.Name where CVAR would instruct the
SMT to take values from the Calculated variables worksheet and the row specified by the current
symbol. But the symbols Sy through H are not present among the symbols of the Calculated
variables worksheet.

Using expandables in the Name and Unit columns has the important benefit of easy
maintainability. If something changes in the model nothing has to be changed in process units.

5.3.2 Advanced expansion

The Symbol column contains more than one expandable. In this case the other columns should
contain matching expandables to those in the Symbol column.

The expandables in the Symbol column are expanded one by one producing a set of assignments
that has the cardinality equal to the Cartesian product of the symbol count on model
worksheets participating in the expansion. Too many expandables would produce a huge
number of assignments (the process code shipped with Sumo has no more than two
expandables per symbol). See example in section 6.2 Gujer matrix calculations and 6.3pH
calculation without summation.

5.3.3 Even more advanced expansion

The Symbol column contains one or more expandables but Expression contains matching and
non-matching expandables. In this case the non-matching expandables should be preprocessed
with rules before expansion, eliminating the non-matching expandables. After that the
procedure described in the previous subsection can be started. See the example in section 6.1
Summation, multiplication.

32

6 Special calculations

This chapter contains examples of advanced expansion. The examples are taken from a real
process unit, Layered SBR with calculated DO.x1sx, and Sumol.x1smis used as model.

6.1 Summation, multiplication

Row 124 of the following process code table shows an example of 5.3.3 Even more advanced
expansion. Symbol contains an expandable (SV) and Expression contains a matching SV and a
non-matching MODEL .Model. j expandable.

e0e M Ew-d - o Layered SBR with calculated DO.xlsx Q- Search Sheet S-
Home Insert Draw Page Layout Formulas Data Review View Developer 12 Share ~
A19 . fr v

A B c D E F G H
117
us Biokinetic reactions
118
120 [T codelocation{integrated)
e svmbol_____[Name __________| unie ________[pecmals __Jrie ______________________[rincple/comment _______|

122
123
124

FiopeL Model]

Vuooe madelsvl]

MODELModel.Name
Stoichiometry coefficient

MODELMadel.Rate[]
MODEL Madel.SV[]

MODELModel.Unit

Reactive;[n]; Non-Polymer

Reactive;[n]

rate_SV[]

MODELSV Name rate

Vnooe madelLsvl] * Puonemose (]

gm’d’

sum{MODELModel j); Reactive; [n]); Non-Polymer

125

126 Settling
127

Help

Ready L

Unit Parameters Components Code Display Popup +

Figure 22 Advanced expansion examples in the Gujer matrix table.

In the example the non-matching expandable should be eliminated before expansion. This
is done by the sum(MODEL.Model. j) rule, which instructs the SMT to unwind the expression in a

sum by the MODEL .Model. j index as follows:
r‘ate_SV[] = V1,SV[]*P1[] + Vz)sv[]*l"z[] P owo Ar V79,5\/[]*r‘79[]

The index MODEL . Model. j is taken from the Model worksheet, column j of the default model
containing numbers from 1 to 79 which are substituted in the summation.

ece O Ew- & Sumo'.xlsm Q- Search Sheet @-

Home Insert Draw Page Layout Formulas Data Review View Developer 12 Share
Ag9 . fx N

A B c o E F G H 1 1 K L M
Check Continuity Check Continuity
and Rates without Rates

1
2 Gujer kinetic matrix |
3 i Symbol |Name Svra Ss Swieo. G L Su Cy Xy Lo Lo
4 1 rl (OHO growth on VFAs, O, -1/ ¥ononram
5 2 r2 (OHO growth on VFAs, NO, -1/ ononraseen
81 78| [r78 [Ammonia absorption - surface
82 79| |r79 Mitrogen gas transfer - surface
LE]

84 Elemental composition |
s 1 1 1 1 1 1 |n 2 1 1

Parameters Model pH Species Components Calculated variables +

Concepts

Figure 23 The indexer column j on the Model sheet of Sumol.xlIsx.

33

After this step a simple expansion can be executed because the expression contains only
matching SV expandables (same is true for the Name) column. The result of the expansion is
shown in the following table:

Nr. | Symbol Name Expression Unit

1 | rate_Svea[l VFAs concentration visveall*raf] + ...+ | g.m-3.d-1
V79,5VFA [] *r79 []

64 | rate_Gp[] Nitrogen gas concentration | View[l*rill +..+ | gm-3.d-1
V79,6n2[]* 7]
Table 3 Result of expansion of row 124.

The Unit sheet does not contain an expandable, it's content will be preserved. Please note,
that only the blue colored symbols were the result of the expansion.

6.2 Gujer matrix calculations

In the previous example the expandable summation was taken out of context. If the whole code
table is taken in consideration it reveals calculation involving the so-called Gujer matrix.
The result of expanding rows 122-124 is the following set of assignments:

e in row 122 the columns contain one matching expandable represented by the
MODEL .Model.<column name> notation, meaning that the SMT can take values from
columns of the Model worksheet. In this case Symbol takes values from the j column
while Expression from the Rate column of the worksheet Model.

Nr. | Symbol | Name Expression Unit
1| ra] OHO growth on {Hoto,m * Xoro * Msatsvrakvea * Msatsozkoz0n0 | g.m-3.d-1
VFAs, O2 * Msatsnrxkntxsio * Msatspos,kpossio *

Msatscar,kcar * Msatsan,kan * Bellinhpu}{]

79 | rooll Nitrogen gas transfer | {Kiaenasur * (Senzsur,sat - Snz)}] g.m-3.d-1

- surface

Table 4 Result of expanding row 122. The curly braces in Expression indicate that the array sign is applied to
the whole expression where it is the case.

e inrow 123 Symbol contains two expandables. Expression contains two expandables as
well but in a tricky way: there is the matching triplet syntax expandable and, embedded
in it, the SV column expandable. This is OK because Symbol specifies the same two
worksheets: Model and Components to work with. The column part of the triplet syntax
will be expanded according to its matching Symbol expandable (i.e. to MODEL .Model.SVFA
when the Symbol expansion is v1,svea[] and so on). The result of the expansion is (taking
only the columns with expandables):

34

Nr. | Symbol Expression Unit
1 | vysvrall -1/YorHo,vFaox g.m-3.d-1

79 | Vrosvrall g.m-3.d-1
80 | vissll g.m-3.d-1

158 | vro,s8(] g.m-3.d-1

5056 | V79,6n2] g.m-3.d-1
Table 5 The result of expanding row 123.

e for row 124 see section 6.1 Summation, multiplication.

6.3 pH calculation

In pH calculations the relevant worksheets of the model are pH and Species shown on the next
picture:

e0e [a wv- hé Sumol.xlsm Q.- Search Sheet ©-
Home Insert Draw Page Layout Formulas Data Review View Developer 12 Share
A5 . fe .
A 8 c o £ F 6 H
1 [—
2 matrix Type(Equilibrium)
3 Symbol Name [H'] [OH] [NH,] [NH] NO,] [H2C04]
4 dissyzo Dissociation of water 10M-pH) Kuf [H']
5 diss lonization of ammonia (Snue (AM* 1000)) *Kpgicaf ([H T+Kpica) | (S (AMy* 1000)) * [H'T/{[H T+ Kpia)
T mapa Chioride fully dissociated
15 NP5k ar o ferrous ions dissociated
16
17 Charge balance and ionic strength |Type(Chargebalance)
18 Symbol Name 11 [oH] [NH;] [NH,] [NO,] [H:€0;]
19 chargebalance Charge balance 1 -1 0 1 =l o
20 Saie lonic strength frerats.n Fromusan o Froms.at frorass.an (]
21
Help Concepts Parameters Model pH Species Components Calculated variables +

o0 e M E v~ 5 Sumol.xlsm Q- Search Sheet ©-
Home Insert Draw Page Layout Formulas Data Review View Developer 12 Share
A32 . fr v
A] c [3 F G H 1 1 K L M N o P a R H
x N X ;
)
2 Equilibrium species
3 Symbol Name Value Unit Decimals Rule Principle/comment
a [H] __|Proton 6.30957608| mol.L” 2 pH
5 [oH]__|Hydroxideion 130143607 molL’ 2 oH
6 [NH;] |Fr i 445681E07| molL’ 2 fSuwals PH
7 [NH,]_|Ammonium 7.09487605| mol L’ 2 (Sl PH
8 [NOy] |Nitrate 0.000356972| mol.L” 2 pH
9 [H,€0,] |Carbonic acid 0.000685861| mol.L” 2 fSeas); PH
T [Mg"]_|Magnesium ion 0.000817157] mol.L” 2 lSug): PH
20 [CAT] |Sodium [strong cations) 0.001522416| mol.L™* 2 (Scurk pH
211 (K] |Potassium 0.000383648| mol.L’ 2 f(5,):pH
22 [aN]_|c) 0 mol.L’ 2 5wl pH
23 [Fe] |Ferrousion 1.79067655| molL* 2 f(Sees): pH
24
Help Concepts Parameters Model pH Species Components Calculated variables +

Ready LT

Figure 24 The pH and Species worksheets of the Sumol model. Please note that some rows are hidden.

Process units can reference the content of these worksheets with shortcut symbols and the

triplet notation. Figure 25 show the pH calculation section of a process unit:

35

e0e maE w- b 0 Layered SBR with calculated DO.xlsx Q- Search Sheet ©-

Home Insert Draw Pagelayout Formulas Data Review View Developer L Share
A617 o S v
A B c [E F G H

se4 PH calculation
595
5% Codelocation(Eguiibrium)
L svro e Jogeson ___Jume _oecmats Jrue _________________|principlefcomment _|
508 |Wawoeipnsmased] |Coefficient for MODELSPC Name involvement in MODELpHName [MODELpH.SPC) | |in1; TvpetEquitibrium)
599 [CVAR]) |MODELCVAR.Name |MODEL CVAR Expression] |MODELCVAR.Unit | Inl; Type(Equilibrium) |Equilibrium calculated variabl
600
so1 CodelocationfEquilibrium)
ol sy e fepesion Juie _oeimabs Jrie _____Jerinciple/comment __|
603 [secl MODELSpecies.Name Vuicnesssymeotsocl] |MoDELSpecies.unit | |iml; Type{Equilibrium); sum{MODEL pH Symbol)
604
&5 Codelocation{Eguiibrium)
CO v e fepeson Juie oeamais Jrie ____Jrincie/comment ___|
607 |MODELpHSymboll] |MODELpH.Name MODEL pH.SPC*SPC[] | MODEL pH.UNit |sum(sPc); Type{Chargebalance}; [n]
Help Unit Parameters Components Code Display Popup +

Ready Calculate 1T

Fiqure 25 The pH calculation section on the Code sheet of a process unit.

The three tables contain the following advanced expansions:

e in row 598 Symbol contains two expandables: MODEL . pH.Symbol and SPC. The Name
column contains also two matching expandables which will not cause any problem.
Expression has two expandables in the tricky way, explained in the previous section.
This indicates that the result will be the same bloated table of assignments as in the
previous example:

Nr. | Symbol Name Expression

1 | VdissH20,[H+] Coefficient for Proton involvement in 107(-pH)
Dissociation of water

12 | Vmapsrerrous,[H+] Coefficient for Proton involvement in ferrous
ions dissociated

13 | Vdissh20, (0] Coefficient for Hydroxide ion involvement in | KW/[H+]
Dissociation of water

24 | Vmapsrerrousjor] | Coefficient for Hydroxide ion involvement in
ferrous ions dissociated

240 | Vmapsrerrous,[Fe2+] | Coefficient for Ferrous ion involvement in Sre2/(AME*1000)
ferrous ions dissociated

Table 6 Result of expanding row 598.

e inrow 599 a simple expansion can be performed with a simple result set like in the Table
2, but instead of state variables the result will contain calculated variables of type
Equilibrium.

e inrow 603 Symbol contains one expandable, but Expression contains a matching and a
non-matching expandable. The non-matching should be eliminated by a rule, in the case
by the rule sum(MODEL.pH.Symbol). First, the summation result will be:

SPC[] = VdissHZO,SPC[] + ... + VmapSFer‘r‘ous)SPC[]

and after expansion the result is the following list:

36

Nr. | Symbol | Name Expression Unit
1 [H+][] Proton VdissHZO,[H+][] + ...+ VmapSFerrous,[H+][] mol.L-1
20 [Fe2+][] Ferrous ion VdissHZO,[Fe2+][] + ..+ VmapSFerrous,[Fe2+][] mol.L-1

Table 7 Result of expanding row 603.

e inrow 607 Symbol contains one expandable, but Expression, again, contains a matching
and a non-matching expandable. The elimination of the non-matching expandable is
performed by the sum(SPC) rule. First, the summation result will be:

MODEL . pH.Symbol[] = MODEL.pH.[H+] * [H+][] + ..
[Fe2+][]

+ MODEL.pH.[Fe2+] *

The Type(Chargebalance) rule selects the second table on the pH worksheet and the
resulting list of assignments will be:

Nr. | Symbol Name Expression Unit
1 | chargebalance[] | Charge balance | 1* [H+][]+...+2* [Fe2+][] mol.L-1
2 | IScalc] Tonic strength | fmonoscat * [H¥][1 + ... + faiis car * [FE2+][] | mol.L-1

Table 8 Result of expanding row 607.

6.4 Event handling

Events in SumoSlang are represented by a chain of function calls. An event function is defined

in the Event code location. The name of the function is the section part of the Codelocation(...)

argument. The event function has one argument usually to pass timing information.

The event function can be called in process code by setting Symbol to the function name,

Expression to the function argument and specifying a Call rule, as the next example shows:

ede O wv- ¥ o PID controller.xlsx Q- s heet ©-
Home Insert Page Layout Formulas Data Review View Add-ins 12 Share

A26 fx v
A 8 c D E F G [

2 Controller initialization Codelocation(ZeroTime)

e svbol Jhame _Jegression ___________________Jume_____________Joedmals _______________|Rue _|Principle/comment

4 MV |Manipulated variable MV, Mvunit | |

5 QVaceccall Controlled variable error history 0 CVunit Inl

6 | ||controltime ® Call the controller code _ - Am— =~ call |

7

8 Codelocation{Event, controltime)

i e —_ I [[[

10| | teowral Control time period o 1 n

1 | Controlled variable error Vogp - OV /, CVunit

12 AV, Controlled variable error derivative (Verr = Verr oroqp 11 eomret Cvunit.d”

x| Controlled variable error history update | MoveANPrepehd|CVy usery; Ver)

L P

direction YKy o * (CVare + Kipio * CVerrimes * Koo * 00Venr) | Mvunitd”

Hargsbund(MV + dMV_dt; MV,...; MV,ru) MVunit

- "ﬂme /g .d
Time + tentrots * Cmss

CVunit
Cvunit.d

Controlled variable error integrate

| Manipulated variable change
Manipulated variable
Last call time

ime "~ | Call the controller code Call

Unit Parameters. Code

Display

Popup +

Figure 26 Event call example.

In this example the event function is defined in the table named Controller evaluation, and

it is called in two places: in row 6 of the Controller initialization table with the argument Now,

and in row 18 of the function definition table with the timing argument. The latter means that

the event calls form an infinite loop. Now and Time are keywords representing the time at the

start of the simulation and the current time at every call.

37

/ Namespaces

Namespaces are qualifiers or prefixes of symbols used in assignments. These prefixes usually
are not visible in the process code, only in the generated XML file. One exception is the
plantwide code file, where fully qualified symbols could be used (see 2.4.1 Plantwide code).
There are two types of namespacing
e implicit—performed automatically by the SMT behind the scenes
e explicit—declared in process code by the author of the process code to alter the
automatic namsespacing

7.1 Implicit namespaces

The modeled plant may contain equations where symbols are coming from different process
unit instances of the same kind. The generated XML contains equations from all process units.
To make the symbols unique and to place them in the context of their containing process unit,
they are qualified or decorated with the path from the plant root to their process unit (see
Figure 6).

The path elements are delimited with double underscore “__”. For example, the following

assignment in PUi2:
SV = SV 0
will be generated as
Sumo__Plant_ PU1__PU1 2 SV = Sumo_ Plant_ PU1_PU1 2 SV ©

in the XML file. The first segment, Sumo, is fixed. The root of the hierarchy is represented by
Plant which is the second segment and is provided by the Sumo software. The other segments
are the names of process units which lead to PU1,., finally comes the variable name.

The process unit names are defined on the Structure worksheet of the root. Please remember
that the root is a virtual (invisible) process unit provided by the Sumo software, which provides
the plant name as well.

There is one more segment automatically included in case of model parameters: the model
name. When parameter inheritance is ON, process units will contain the following equation:

PAR = Parent..PAR

which in process unit PUi2 will expand as the following (only the first model parameter of
Type(Kinetic) is shown, see Parameters worksheet in Sumol.x1sm file and the Parent. . construct
in the next section.):

Sumo__Plant_ PU1__PU1_2_ Sumol__muOHO = Sumo__Plant__ PU1__ Sumol__muOHO

where the model parameters are prefixed with the model name Sumol (Sumo1__mu0OH0).

38

7.2 Explicit namespaces

Explicit namespacing is visible in the process code. The namespace should be placed as a prefix
to a symbol delimited with double dot “..” characters. The namespace can be one of the
following elements:

e Parent—keyword representing the direct parent process unit. At the moment, only the
direct parent unit can be referenced.

¢ Root—keyword representing the root of the hierarchy. With this prefix process units can
reference variables directly from the root.

e port name—one of the port names listed on the Unit worksheet of the process unit. This
allows calculations in pipes connecting process units.

e model ID—the ID specified on the Unit worksheet of the process unit. This can be useful
for process units using multiple models (see 8 Using multiple
models).

o model name —if the process unit is restricted to a specific model, the model
name can be used in namespacing. The restriction is made on the Unit worksheet
of the process unit, in the table with type Model and in column Valid. The model
names listed in the Valid column can be used in namespacing.

e process unit name—this should be a process unit name defined on the Structure
worksheet of a process unit. This means that this construct can reference symbols only
from child process units (a process unit knows the names of its children but does not
know the name of its parent).

The namespacing elements listed above are used as relative paths, but they will be extended
to absolute paths in the XML file. For example, on Figure 6 the process unit PU1 may contain a
symbol PU1...Q (referencing a symbol from one of its child process units). It will end up as
Sumo__Plant_ PU1__PU1_2_ Qin the XML file. To access a symbol from the direct parent process
unit the Parent keyword should be used, because a process unit does not know the name of its

parent.

39

8 Using multiple
models

The SMT can handle scenarios where more than one process models are used in a plant. The
following picture shows the process unit hierarchy using two models:

Modeled plant with

model identifiers 1 JPPEELI
e Root
M;,M, ol

Two models
named A and B

Process unit 4 with
model identifiers 1
and 2

Figure 27 Process unit hierarchy with 2 models.

The graphical user interface does not handle yet multi-model plants. To understand how
the SMT handles multi-model projects, see 9.1 SMT command line usage.

Process units contain model identifiers on their Unit sheet. These are not model names —it
would mean that the units would be tied to one model. The identifiers are like local variables in
a structured programming language; they can be used in the whole process unit to refer to a
given model. Given here means that actual model names are coming somehow from the outside

and they are mapped to the model identifiers during a simulation (see this too in section 9.1).

8.1 Default model

The model ID specified on the Unit sheet represents, or in other words is mapped to, the model
used in the plant. It means that every expandable will be expanded from that model. If the plant
uses one model, there is no confusion. When more than one models are specified there is need
for clarification: it should be obvious which model is mapped to which ID.

40

The first model ID specified on the Unit worksheet is the default, and it will be used in
shorthand expansions. Further model IDs can be specified if the user would like to switch to
other models during expansion.

In this case the symbols should be namespaced explicitly with the other model ID (see 7.2
Explicit namespaces). A missing namespace prefix, again, means default model usage in
expansions.

The model names coming from outside are mapped to the plant class in the order of the
model identifiers on the Unit worksheet, i.e. M1 in the root will be mapped to A, and M2 to B.
This affects the expansion and the namespacing processes: expandables will be expanded and
model parameters will be namespaced from the correct model.

The order of model mapping from a composite process unit to its components is specified
on the Structure worksheet. The following picture shows the root process units from Figure 27.

ece O Ew-d ~ @ Fictive multi-madel composit unit.xlsx — Saved y M Q- Search Sheet ©-
Home Insert Page Layout Formulas Data Review View 12 Share
B4 . fie PU1file name .

A B c D E F G H I J K L M N o

1

2 Plant example

3 Unit component _[Unit name __[Label ____[Reactive _[inheritkinPAR |inheritstoPAR | inheritequPAR [Models |
4 | PUL file name Jpu1 PUL ‘ TRUE TRUE |TRUE M1 ‘
5 PU2 file name PU2 PU2 TRUE TRUE TRUE M1

6 PU3 file name PU3 PU3 TRUE TRUE | TRUE M1

e I

8

PU4 file name ‘PU“ .PUJ FALSE |FALSE FALSE
TRUE TRUE TRUE

10 Internal connection

n EETEE I T U

L ' ar Pre———
Help Unit Parameters Code Structure Display Popup +

Figure 28 Root of the hierarchy shown as a process unit.

Row 7 contains a trick, it “pushes down” M: first then M1 in row 8, meaning that the first
model ID in PUs will be mapped to the content of M2 from the root (i.e. B), and the second
model ID in PUs will be mapped to A. Thus, B will be the default model in PUL..

The model IDs are used to write model independent process code. Not just that, but it
allows shuffling the models in child process units which would not be possible if model names
were used directly to identify the models.

8.2 Using non-default models

Section 5.1 Expandable symbols explains how shorthand keywords like SV, PAR, CVAR, SPC could
be substituted by a corresponding triplet notation, for example SV is a shorthand of
MODEL .SV.Symbol, where MODEL is the default identifier specified on the Unit worksheet of the
process unit. The shorthand notation cannot be used if non-default models are needed in the
process code. In that case the full triplet syntax should be used.

Figure 29 shows an example of multiple model usage for parameter inheritance in the
fictive plant depicted in Figure 27.

41

[N] I M g v~ = @ Fictive PU4.xlsx — Saved to my Mac Q.- Search Sheet ©-
Home Insert Page Layout Formulas Data Review View Add-ins L Share
A21 s S v

A B c D E F G H i 1 K L N
1 Model parameter inheritance
2
3 Codelacation{integrated)
R svreoname Jepression _____Junie _____Joecmats[rae _____________[principle/commen |
5 PAR MODEL.PAR.Name Parent..PAR MODEL.PAR.Unit Reactive; i
6 PAR MODEL PAR Name Parent..PAR MODEL PAR. Unit Type{Stoichiometric); InheritstoPAR
7 PAR [MODEL PAR Name Parent..PAR [MODELPAR.Unit Type(Equilibrium); InheritequP AR
8
9 Codelacation{integrated)
10 BRI T Junit __[pecimals [rie __________|principle/commen |
1 M;.PAR.Symbol M,.PAR.Name Parent..M, PAR.Symbol | M,.PAR.Unit Reactive; Type(Kinetic); InheritkinPAR
12 M,.PAR Symbol M,.PAR.Name Parent..M, PAR Symbol M,.PAR.Unit Type{Stoichiometric); InheritstoPAR
13 M;.PAR Symbol M,.PAR.Name Parent..M,.PAR.Symbol M;.PAR. Unit Type(Equilibrium); InheritequPAR
14

Unit Parameters Code +

Figure 29 Parameter inheritance with two models.

The first PAR triplet shows the shorthand notation representing the default model, while the
second PAR triplet shows the usage of the full triplet syntax (please remember that the
shorthand can be used only for Symbol, Name and Unit must use the full syntax in both cases).

42

9 Advanced topics

This chapter contains descriptions of some deeper usage and translation mechanics in relation
to the SMT. This knowledge is not required in everyday modeling and the Sumo software, but it
is good to know nonetheless.

9.1 SMT command line usage

The SMT can be used as a standalone executable program. It is useful to quickly test the
correctness of the process code representing one or more process units. Figure 30 shows the
help information when the SMT is started in a command line window.

e o Windows Server 2016 v ¥
TV C\Windows\system32\cmd.exe

Usage:
SMT<n>.exe <instance_file> [<output_file>] [-nosort] [-noexpand]
[-debug] [-trace n] [-addpath <path_without_ending_backslash>]

- If <instance_file> is given with absolute path it should be in the
‘Plant instances' folder and the search root will be set the 'Process code' folder

- In case of relative path the search root will be set to the folder of the
<instance_file> (for testing plant fil tracted in a single folder)

- <output_file> is the output XML file n ith full path. If missing, the file name
of the first argument is used and the i1l be created in the search root folder.
In case of relative path the working directory is used to create the output file.

- Options with or without parameters:
- -nosort, skip sorting
- -noexpand, skip expanding of process code (obsolate)
- -debug, include debug information (obsolate)
- -trace n, specify verbosity level of console messages (1, 2 are accepted)
- -addpath path, specify additional search path(s) separated with ';'

Examples:

13:06
1.) SMT.exe "C:\Process code\Plant instances\plant.xlsx" -nosort -addpath "C:\Other process code;C:\Yet another process code"

B, 2.) SMT.exe test\plant.xlsx C:\Output\some_file.xnl

Figure 30 The SMT used from the command line.

In case of command line usage, the user should reproduce the root element of the process
unit hierarchy (provided automatically when the SMT is used through the Sumo software).
Moreover, some initialization data is required to reproduce the Sumo software functionality
where user settings are forwarded to the SMT, also automatically.

In addition to the folder structure shown on Figure 1 the command line user should add a
new folder named Plant classes. This should contain the process code files representing the
root element of a plant hierarchy. The root element is a composite process unit like the example
shown on Figure 5, i.e., it should list its components on a Structure worksheet. Figure 31 shows
an example with two process units linked together where the link is represented in the Internal
connection table. The Unit component column contains the process unit file names without
extension.

The Models column contains a single symbol, MODEL, which is the model identifier containing
the actual model name and it is declared on the Unit worksheet. The model identifier is
initialized with the correct model name by a separate file explained below. This separation
allows the reuse of the same plant root with different initialization data.

43

® [] i ™ e IR ~ o CSTR class.xlsx Qv Search Sheet ©-

Home Insert Page Layout Formulas Data Review View Add-ins 12+ Share

A = fx N
A 8 c o 3 3 G H 1 K L M N o

x

2 CSTR class

3 Unit component Unit name Label Reactive Models |So: Snox

4 State influent influent Influent FALSE TRUE MODEL |Integrated

5 CSTR with diffused aeration and calculated DO _|CSTR CSTR TRUE TRUE TRUE TRUE MODEL |Integrated

3

7 Internal connection CSTR dlass pipes

8 [symbol Label From [To]

) [infpipe Influent..outp_|CSTR..inp |

10

1n External connection [CSTR class_pipes|

12 [symbot |Label |From i3]

Help Unit Parameters Structure Code +

Ready

Figure 31 The root process unit representing a simple CSTR test plant.

The other initialization file contains global settings available to the whole plant. This file
should be placed in a subfolder with arbitrary name under the Process code folder. It is called a
plant instance file and its main purpose is to specify the model, some attributes and state
variable handlings globally used in the plant. Figure 32 shows the initialization file of the
previous CSTR test plant.

eve O &E o- = o CSTRinstance.xlsx Q.- Search Sheet @~
Home Insert Page Layout Formulas Data Review View Add-ins 12 Share
A23 . e v
A 8 c 0 3 F G H 1 K L M

2 Instance CSTR instance

3 [symbol Name Class [comments |

4 [Fiant }m CSTR class | |

5

6 Attribute CSTR attributes

7 [symbol Name Default TRule [comments |

8 [et pH calculated TRUE [| |

]
10 Handling | scope(instance)

1 [symbol Name Default [Rule | |

12 [ssv Gas phase Integrated [[|

13

14 Model [Biokinetic model |

15 [symbol [Name Value [Rule [comments |

16 I [Bickinetic model sumol [[|

17

18 Handling [Handiings | scopeimy)

19 symbol Name Default Rule Comments.
20 S0z set
21 Snon set
2 Sne Set

al

Help Unit Parameters Code +

Figqure 32 Initialization information for the simple CSTR example.

The table types and names speak for themselves, the only new element is the Scope tag in
handlings. The Scope(Instance) tag means that the listed state variable handlings are enforced in
all models while the handlings listed in Scope(M1) are enforced only in the model identified by
the argument (row 16 contains the model ID used in scoping). In this example there is only one
model identifier, but more than one can be specified if needed (see 8 Using multiple
models).

Please note that the Process code folder is not required to be the one installed by Sumo. In
fact, for testing purposes, it is a good practice to prepare a separate process code folder
somewhere else then copy the content of the installed Process code folder in it. Sumo provides
such a test folder named My Process Code which has the benefit of being taken in consideration
by the Sumo software, but for simple testing with the SMT the test folder can be anywhere.

44

9.2 Attribute and handling propagation

In the simple CSTR example the root Structure worksheet contains state variable handlings after
the Models column which will be enforced in all component process units. Root handlings, on
the other hand, will be overridden by handlings from the initialization file with Scope(Instance)
or Scope(Mi). The latter overrides the root handlings only if a component uses the model
specified by the scope argument.

Attributes propagate like handlings, but without the complication of scoping. As a general
rule the root will override the attributes and handlings of its components while the initializer
overrides the attributes and handlings in the whole plant. Otherwise the attributes and
handlings specified on the Unit sheet of the individual process units will prevail.

9.3 Algebraic loops

When the plant contains feedback loops some equations in the participating process units
contain circular dependencies called algebraic loops. To solve such an equation system the
Sumo numeric engine uses an iterative process described later in this section.

The next picture illustrates a simple algebraic loop:

Definitions
e an equation system is represented by a
directed graph
e nodes—represent variables
vertices—represent the equations
dependencies as a variable pair (Vfom, Uto)
e the direction of the vertices is from the
right-hand side to the left-hand side. In case
of the equation b =a + 2 this means b < a
. oragoestob.
c=b/5 e analgebraic loop is equivalent to a directed

a=1-¢/2

(b, 0

loop in the graph
the (a=1-c/2 Default sorter behavior
equation{b = a + 2 e break the loop at an arbitrary node
system \c =b/5 (represented by the dashed lines)

e define that node as a loop breaker variable

Figure 33 Simple algebraic loop.

The SMT contains an equation sorter module which recognizes algebraic loops and tries to
flatten (break) them at one of the vertices and declare the left-hand side variable as loop breaker
which will be calculated with the iterative process.

Calculating the arbitrarily chosen loop breaker may or may not produce a satisfactory result
(since the iterative process should be converging). The process code author should be able to
intervene and define a better loop breaker manually. This is a trial and error process: if the
automatic loop breaking does not give a result or it is calculated slowly, the author determines
which algebraic loop is the culprit and intervenes by giving a better loop breaker.

45

The SumoSlang allows this intervention; the author declares a loop breaker variable and
gives its properties (initial value, minima, maxima) with the help of a SolverConfiguration
table (see section 9.3.3). Figure 34 shows the abstract representation of this:

Break at a, with initial value =1,
min = 0. max =100

Advanced sorter behavior
a=1-c¢/2 o break the loop at a user specified node
e define it as the loop breaker variable
At a later stage
e configure it with the initial value of 1,
minimum value = 0, maximum value =
100

P
<

<

(b, ¢

c=b/5

Figure 34 The same loop with a loop breaker given from outside.

9.3.1 1 Solving the equation system

Solving an algebraic loop involves calculating its loop breaker with an iterative process. To do
this, the original equation is transformed to an error function and the loop breaker is calculated
by minimizing the error through the iterative process. This requires a convergent error function
and the value of the loop breaker will be the one where the error is the closest to 0.

Breaking the loop, then defining the error function, then applying the iterative process to
minimize it, is done by the SMT behind the scenes or more precisely it prepares the instructions
for the Sumo numerical engine to do the iteration properly.

Figure 35 shows the abstract representation of this process:

The error function is generated
automatically from the equationa=1 -
¢/2. Calculating the error is equivalent to
solving the equationa-1+¢/2=0.

Try different a values p
during iterationand . {errfa))
choose theone ‘ 2
where err(a)is

closestto0.

All equations are calculated for different
a values during the iteration.

Note that this is not an algebraic loop
because the vertices do not form a
directed loop.

Figure 35 Solving the loop by introducing an error function depending on the loop breaker variable.

9.3.2 Process code example for automatic loop breaking

The equations from Figure 33 can be written in SumoSlang as follows:

46

e0e ME w6 + d* Algebraic loop test unit.xlsx Q- Search Sheet ©-

Home Insert Page Layout Formulas Data Review View Add-ins 1+ Share ~

c6 : fx Variable ¢ v
A B E o E F G H 1] K

1 Simple algebraic loop . A default error function depending on the loop breaker variable

2 Equation system Codelocation(Integrated)” should be provided - error{ib).

3 symbol Name Expression Unit Dedi T:a I::a: hr!a:cer |; dalvt:rr:med by the sclmqr, and it; !t:‘uatinn

4 3 Variable a -2 shoul e replaced with the error equation automatically.

s b Variable b a+2 . 8 E

6| e Variable ¢ b/5 |

- Help Unit Parameters Gode_old Code Data Display Popup +

Figure 36 Process code representation of the simple equation system.

Expected XML output

The <variabledefinitions>..</variabledefinitions> block of the XML file should contain
the highlighted entry:

o0 ee Windows Server 2016 v ¥
File Edit View Project Buld Debug Team XML Tools Test Analyze Window Help X & Quick Launch (Col+Q) p sgnin A
675 <variable cname:"SumoﬁNRE,AlTJSH1:fBUES,EDIJu1t" namespacE;SumquREfnLT” name;ASHE,FBUDS,B[]Dult" datatype="REAL" role="Parameter" o+
676 <variable cna Sumo__PlantName" namespace="Sumo" name="PlantName" datatype="STRING" role="SystemParameter" formatstring="" unit="" /> -

677 <variable cname="Sumo__StepControlStateVar" namespace="Sumo" name="StepControlStateVar" datatype="STRING" role="SystemParameter" formatstrir
678 <variable cname="Sumo__MaxAbsDerName" namespace="Sumo" name="MaxAbsDerName" datatype="STRING" role="SystemParameter" formatstring="" unit="'
679 <variable cname="Sumo__NRErrorMsg_AlgebraicLoop" namespace="Sumo" name="NRErrorMsg_AlgebraicLoop" datatype="STRING" role="SystemParameter" {

680 <variable cna
681 <variable cname="Sumo__NRErrorHsg_Equilibrium" namespace="Sumg
682 <variable cname="Sumo__NRE__ALT__a" namespace="Sumo__NRE__ALT'

Sumo__NRErrorMsg_SteadyState" namespace="Sumo" name="NRErrorMsg_SteadyState" datatype="STRING" role="SystemParameter" forme
- ErrortMsg_Equilibrium" datatype="STRING" role="SystemParameter" form:
datatype="REAL" role="SystemState" sumosymbol="a" formatstring="*" ur

683 <variable cname="Sumo__NRE__ALT__aii" namespace="Sumo__NRE__AL " datatype AL" role="SystemState" sumosymbol="aii" formatstring
684 <variable Sumo__NRE__ALT__aiii" namespace="Sumo__NRE__ALT" name="aiii" datatype "SystemState" sumosymbol="aiii" formatstr
685 <variable Sumo__NRE__ALT__avi" namespace="Sumo__NRE__ALT" name="avi" datatype ystemState" sumosymbol="avi" formatstring
686 <variable Sumo__NRE__ALT__bvi" namespace="Sumo__NRE__ALT" name="bvi" datatype="REAL" role="SystemState" sumosymbol="bvi" formatstring
687 <variable Sumo__NRE__ALT__evi" namespace="Sumo__NRE__ALT" name="evi" datatype="REAL" role="SystemState" sumosymbol="evi" formatstring
688 <variable Sumo__NRE__ALT__av" namespace="Sumo_NRE__ALT" name="av" datatype="REAL" role="SystemState" sumosymbol="av" formatstring="'
689 <variable cname="Sumo__NRE__ALT__aiv" namespace="Sumo__NRE__ALT" name="aiv" datatype="REAL" role="SystemState" sumosymbol="aiv" formatstring_Y_

120% - 4 v

4+ Add to Sourc

Figure 37 Variable 'a’ in the variabledefinitions block

The ZeroTime/1 section should contain the highlighted entry to keep the SMT sorter happy
(avoid the variable Sumo__NRE__ALT__a was not found in the error equation). This is inserted
automatically by the SMT.

[RN X Windows Server 2016 v I
Fle Edit View Project Build Debug Team XML Tools Test Analyze Window Help Y & Quick Launch (Cil+Q) P signin H

2230 | 11></code> +

2231 </blocksection> -

2232 </block>

2233 B <block name="ZeroTime">

2234 & <blocksection id="1">

2235 & <code><! [CDATAL

2236 | Sumo__NRE__ALT__a = Sumo__LoopBreakerDefault;

2237 | Sumo__NRE__ALT__aii = Sumo__LoopBreakerDefault;

2238 | Sumo__NRE__ALT__aiii = Sumo__LoopBreakerDefault;

2239 | Sumo__NRE__ALT__avi = Sumo__LoopBreakerDefault;

2240 Sumo__NRE__ALT__bvi = Sumo__LoopBreakerDefault;

2241 Sumo__NRE__ALT__evi = Sumo__LoopBreakerDefault;

2242 | Sumo__NRE_ALT _av = 1;

2243 | Sumo__NRE__ALT__aiv = 1;

2244 | Sumo__NRE__ALT_ai = 1; |
1200 - 400 R S »

4+ Add to Sourc

Figure 38 The same variable in the ZeroTime block.

The Algebraicloop/1 section should contain the blue highlighted entry and the
Integrated/1 section the yellow highlighted entry where the function call name is derived from

47

the block name and section name of the algebraic loop. The blue highlighted entry contains
information for the solver where its input is the loop breaker variable a and its output is the
error value. The code section inside solver contains the flattened equation system and the error

calculation equation inserted by the SMT.

e0ee Windows Server 2016 v ¥
File Edit View Project Build Debug Team XML Tools Test Analyze Window Help ¥ & | Quick Launch (Ctri+Q) P signin [

loop testxml # X

<bleck name="Algebraicloop™>
<blocksection id="1">
<solver type="algebraic" name="nr" parameter="5,3.4">
<input symbol="Real Sumo__NRE__ALT__a" initial="Sumo__LoopBreakerDefault" minimum="0" maximun="1e+30" />
<output symbol="Real Sumo_MNRE_ALT__a_error" />
= <code><! [CDATAL
8 /I algebraic loop start
Sumo__NRE__ALT__b = Sumo__NRE__ALT__a+2;
Sumo__NRE__ALT ¢ = Sumo_ HRE__ALT_b/5.0;
Sumo__NRE__ALT__a_error = Sumo__NRE_ALT__a - (1-Sumo_NRE_ALT__c/2.0);
// algebraic loop end
11></code>
</solvers
</blocksection>
B kblocksection id=
lkblac ion

b k|

/blacksection
blocksection
/blocksections|

lkblocksectiaon
kblocksection id=
</block>
<block name="Equilibrium" />
<block name="Integrated">
<blocksection id="1">
B <solver type="ode" name="bdf">

HRE__AL >...</blocksections|

-

[J Ready Ln 2264 S 1 Add to Source Control «

Figure 39 XML overview showing the AlgeraicLoop and Integrated blocks to solve the equation system in the
example.

9.3.3 Process code example for manual loop breaking

Figure 40 shows how the process code author can manually declare a loop breaker for the
simple equation system used in the previous sections as example (the worksheet contains many
examples with the same variables which requires a distinction between them. In the different
examples the variables are suffixed with roman numerals.)

eve ME v J ~ @ Algebraic loop test unit.xlsx eet ©-
Home Insert Page Layout Formulas Data Review View Add-ins |2 Share
A36 g fx v
A B C D E F G H 1 J K
s |Simple algebraic loop with solver configuration A Rule may specify explicitly the code section where the loop will
be placed. The default code section name is the loop breaker
9 - symbol. The section should be namespaced.
10 | [solverConfiguration | [solver | JIE .
11 |symbol Name [Target [value | | Tunit [Decimals_|Rule [Principle/co |
12| |al Loop breaker err_ai [l| 0| lDO| | |Section(secllon) |Usev defined loop breaker |
2 : Example for user defined error function dependent on the loop breaker variable
14 Equation system | Codelocation(integrated) specified in the SolverC table:
15 |Symbol Name ression Unit |Decii errorfal) = al -1+ ¢cif2
16 | |bi Variable bi lai+2 N N . " N
17 o Variable lbi/S The err_ai symbol is the variable holding the function value and it should match the
18 " | - - - - name specified in the Target column of the solver configuration table. (Note that in this
lerral JErvor finclion'al lai-1+ar2 L case the error function is the same as the automatic.)
Note that the loop is formed including the SolverConfiguration table. The error function can be in the model, or another process unit visible to this process
The loop breaker equation is a "fake" equation to trigger a loop in the SMT sorter. The unit (e.g- child process units)
automatic steps mentioned in the simple case, are explicitly written in the process code, = — — — —_
giving greater flexibility in choosing both the loop breaker and the error function, The fake
19 equation should be removed automatically.
Help Unit Parameters Code _old Code Data Display Popup +
Ready] m - e + 120%

Figure 40 Solver configuration used to specify a loop breaker.

48

Please note that the loop breaker equation
a=1-¢c/2

is not present in the Equation system I table, it is replaced by the error equation. This error
equation is automatically provided by the SMT in the default mode discussed previously.

The sorter module recognizes the loop breaker variable and would not complain when it is
used on the right-hand side of other equations. The SMT will use the information in the
SolverConfiguration table at a later stage to provide input and output symbols to the solver
used to calculate the error (see Figure 39).

Expected XML output

The AlegbraiclLoop block now contains a custom section name Sumo_ NRE__ALT _section
specified in the Rule column of the SolverConfiguration table and namespaced according to the
container process unit.

o000 Windows Server 2016 v I
File Edit View Project Build Debug Team XML Tools Test Analyze Window Help |3 Full Screen ¥ & | Quick Launch (Ctrl+Q) £ signin M

Algebraic loop testxml + X
e

©= RIGEUT3ICCO0
ection id="1"

P odbf o

. </blocksection>
kblocksect WRE_ALT_">... </blocksection]
<blocksection id="Sumo__NRE_ALT_ section">
<solver type="algebraic" name="nr" parameter="5,3.4">
<input symbol="Real Sumo__NRE__ALT _ai" initial="1" minimum="0" maximum="100" />
<output symbol="Real Sumo_NRE_ALT _err_ai" />
2322 E <code><! [CDATAL
3 /I algebraic loop start
Sumo__NRE__ALT__bi = Sumo__NRE__ALT__ai+2;
Sumo__NRE__ALT_ ci = Sumo__HRE__ALT_ bi/5.0;
Sumo__NRE__ALT__err_ai = Sumo__NRE__ALT__ai-1+Sumo__NRE__ALT__ci/2.0;
/I algebraic loop end
11></code>
</solver>
</blocksection>

>... </blocksections

<hlock name="Equilibrium" />
<block name="Integrated">
<blocksection id="1"»
<solver type="ode" name="bdf">
<code><! [COATA[

B0 L e T ol o) 4]

Ln 2329 5 4 Add to Source Control ~

Figure 41 XML overview showing the AlgeraicLoop and Integrated blocks in case of manual loop breaker
definition. The outcome is the same.

49

9.3.4 4 Complex equation system

Figure 42 shows the graph representation of a complex equation system containing multiple
loops:

Nested triple loop:
+ 3 loop breakers are chosen: b, e, h
« note that ¢ and d are equations with
more than one variable, therefore the
nodes have many incoming vertices

(a=1-c2
b=a+el2
c=d+bi5
~ the d=i+eld
f=b-al : equation=< e=h+ 3
system f=b-a2

g=e-1f

h=g+2
=3 +h4

Figure 42 Complex equation system with many algebraic loops and "manually” chosen loop breakers.

The lighter colored vertices represent the manually chosen loop breakers. Solving this equation
system require introducing 3 error functions (in default mode the SMT will choose the loop
breakers and the error equations) as shown in the following picture:

o~

’ Ny —
err(h)y =h-g-2 | err(h) |

err(b)=b-a-ef2

¢=d+bi5

err(e) | err(e) =e-h-fi3
\ /

N~

I~) 7 Straightening the loops:

o + add the error equations (in case if they
are missing)

= configure the equation solver with the
loop breakers and their corresponding
err values

* note that no directed loops left after the
introduction of loop breakers

Figure 43 Solving the complex loop.

50

Process code example for the default method:

e0e ME w3 @ Algebraic loop test unit.xlsx Q.~ Search Sheet ©-
Home Insert Page Layout Formulas Data Review View Add-ins 1=+ Share

A36 : fx B
A B c D E F G H |] K

s3 Many related algebraic loops

54
55 ion system VI C

56 |Symbol Name Expression Unit__|Decimals _|Rule Principle/comment
57 |avi Variable avi 1-cvif2

58 [bvi Variable bvi avi +evi/2

59 fovi Variable cvi dvi + bvi/5

60 [dvi Variable dvi ivi +evi/d

61 [evi Variable evi hvi +fvi/3

62 |fvi Variable fvi bvi - avi/2

63 [avi Variable gvi evi - 1/fvi

64 [hvi Variable hvi gvi+2

65 |[ivi Variable ivi 3 +hvi/a

66

Help Unit Parameters Code_old Code Data Display Popup +

Figure 44 Process code example of the complex equation system.

The process code author relies on the SMT to solve the algebraic loop. If it is not satisfactory, a
manual intervention is required. Figure 45 shows the XML representation of the default
method, where the loop breakers chosen by the SMT are g, b, e. In this example the section name
7 is given automatically and it is a plant wide unique sequence number.

[RoN X Windows Server 2016 v
File Edit View Project Debug Team XML Tools Test Analyze Window Help =2 Full Screen X & Quick Launch (Ctrl+Q) £ signin [

Algebraic loop testxml* & X
<blocksection id="7">
<solver type="algebraic" name="nr" parameter="5,3.4">
<input symbol="Real Sumo__NRE_ALT__avi" initial="Sumo_LoopBreakerDefault" minimum="0" maximum="1e+30" />
<input symbol="Real Sumo__NRE__ALT__bvi" initial="Sumo__LoopBreakerDefault" minimum="0" maximum="1e+30" />
<input symbol="Real Sumo_ HRE__ALT_ evi" initial="Sumo_ LoopBreakerDefault" minimum="0" maximum="1e+30" />
<output symbol="Real Sumo_NRE_ALT__avi_error” />
<output symbol="Real Sumo__NRE_ALT_bvi_error" />
<output symbol="Real Sumo_ NRE_ALT _evi_error” />
= <code><! [COATAL
/i algebraic loop start
Sumo__NRE_ALT__fvi = Sumo__NRE__ALT__bvi-Sumo__MNRE__ALT__avi/2.0;
Sumo__NRE__ALT__gvi = Sumo__NRE__ALT__evi-1/(Sumo__SmallNumber + Sumo__WRE__ALT__fvi);
Sumo__NRE__ALT__hvi = Sumo_ HRE__ALT_ gvis+2;
Sumo__NRE__ALT__evi_error = Sumo__NRE__ALT__evi - (Sumo__NRE__ALT__hvi+Sumo__NRE__ALT__fvi/3.0);
Sumo__NRE__ALT__bvi_error = Sumo__NRE__ALT_bvi - (Sumo__NRE__ALT__avi+Sumo__NRE_ALT_ evi/2.0);
Sumo__NRE__ALT__ivi = 3+Sumo_ NRE__ALT__hvi/4.0;
Sumo__NRE__ALT__dvi = Sumo__HRE__ALT__ivi+Sumo_MRE__ALT__evi/4.0;
Sumo__NRE__ALT__cvi = Sumo__NRE__ALT__dvi+Sumo__NRE__ALT__bvi/5.0;
Sumo__NRE__ALT__avi_error = Sumo__NRE__ALT__avi - (1-Sumo__NRE__ALT__cvi/2.0);
// algebraic loop end
11></code>
</solvers
</blocksection>
B [blocksection id="Sume__WRE_ALT_">...</blacksection3]
</block>
<block name="Equilibrium" />
<block name="Integrated">
<blocksection id="1"
383 B <solver type="ode" name="bdf">
<code><! [COATAL
ode();

> k]«

1 Add to Source Control «

Figure 45 XML representation of the default algebraic loop solution.

Process code example for the manual method:

The process code author lists the manually chosen loop breakers in the SolverConfiguration
table and the loop breaker equations are replaced manually with the error equations.

51

e0e ME w6 + ©° Algebraic loop test unit.xlsx Q.- Search Sheet @~

Home Insert Page Layout Formulas Data Review View Add-ins 12 Share
A36 = fr v
A c D E F G H 1] K
s7 Many related algebraic loops with solver configuration
63
69 SolverConfigurati Solver il C d)
70 |symbol Name Target Value |Minimum Unit Decimals _|Rule Principle/comment
71 |bvii Loop breaker bvii err_bvii 1 0 100 User defined loop breaker
72 |evii Loop breaker evii err_evii 1 0 100 User defined loop breaker
73 [hvii Loop breaker hvii err_hvii 1 0 100, User defined loop breaker
74
75 system Vil] codelocation(integrated) The section naming is undefined. The loop
76 [symbol Name Expression Unit_|Decmals_|Rule Principle/comment B [0tk be Placed In the sSEeoey
77 |avii Variable avil 1- oviif2 s
78 [ovii Variable cvii dvii + buil/s
79 |dvii Variable dvii ivii + eviifd
80 [tvii Variable fvii bvii - aviif2
81 [gvii Variable gvii evi - 1/fvii
82 |ivii Variable ivii 3 + hvii/4
83 [err_buii Error function for bvii bvii - avii - evif2
84 [err_evii Error function for evii evii - hvi - fvii/3
85 [err_hwii Error function for hvii hvii - gvii - 2
A
Help Unit Parameters Code_old Code Data Display Popup +

Figure 46 Complex equation system with user defined algebraic loop handling.

The section name in the AlgebraiclLoop block is undefined in this case but it should be different
from the default mode. One solution is to use one of the loop breaker variable names as section
name. In the following example the last variable name is chosen: hvii. Being a variable name (i.e.
not a plant wide unique name), it should be namespaced according to the container process
unit.

Figure 47 shows the XML representation of the manual loop breaker selection:

[RoN X Windows Server 2016 v
File Edit View Project Debug Team XML Tools Test Analyze Window Help =2 Full Screen X & Quick Launch (Ctrl+Q) £ signin [

kblocksection id="7">...</blocksections|
<blocksection id="Sumo__NRE__ALT__hvii">
<solver type="algebraic" name="nr" parameter="5,3.4">

> k]«

minimum="0" maximum="100" />
inimun="0" maximum="100" />

<input symbol="Real Sumo__MRE__ALT_ evii" initia

2358 <input symbol="Real Sumo__NRE__ALT__bvii" initial="1" minimum="0" maximum="100" /A
2359 <output symbol="Real Sumo_ NRE__ALT_ err_hvii" />

2360 <output symbol="Real Sumo__NRE_ALT__err_ev.

2361 <output symbol="Real Sumo__NRE_ALT _err_bvii" />

2362 E <code><! [COATAL
#363 | // algebraic loop start
2364 | Sumo__NRE__ALT__ivii = 3+Sumo__NRE__ALT__hvii/4.0;
Sumo__NRE__ALT__dv. Sumo__MRE__ALT__ivii+Sumo__NRE__ALT__evii/4.0;
Sumo__NRE__ALT__cvii = Sumo__NRE_ALT__dvii+Sumo__HRE__ALT__bvii/5.0;
Sumo__NRE__ALT__avii = 1-Sumo__NRE__ALT_ cvii/2.0;
Sumo__NRE__ALT__err_bvii = Sumo__NRE__ALT__bvii-Sumo__NRE__ALT__avii-Sumo__NRE__ALT _evi/2.0; -_—
Sumo__NRE__ALT_ fvii = Sumo__NRE__ALT__bvii-Sumo_ NRE__ALT__avii/2.0;
Sumo__NRE__ALT__err_evii = Sumo__NRE__ALT__evii-Sumo__NRE__ALT__hvi-Sumo__NRE__ALT_ fvii/3.0;
Sumo__NRE__ALT__gvii = Sumo__NRE__ALT__evi-1/(Sumo__SmallNumber + Sumo__MRE__ALT__fvii);
Sumo__NRE__ALT__err_hvii = Sumo_ NRE__ALT_ hvii-Sumo_ NRE_ALT_ gvii-2;
// algebraic loop end
11></code>
</solver>
</blocksection>

“Equilibrium” />
="Integr ">

= <blocksection i
1B <solver type="ode" name="bdf">
<code><! [COATAL

sectionV_ode();
ctionIV_o
_section_ode(

2392 </solver>

P Add to Source Control «

Figure 47 XML representation of the manual algebraic loop solution.

The examples can be found in the references subfolder of the documentation installed with the
Sumo software.

52

	1 Introduction
	1.1 What is SumoSlang?

	2 Structure
	2.1 General settings
	2.2 Process model
	2.3 Process units
	2.3.1 Composite process units

	2.4 Process unit hierarchy
	2.4.1 Plantwide code

	3 Process code layout
	3.1 Table structure
	3.1.1 Simple table
	3.1.2 Arrays
	3.1.3 if block
	3.1.4 C++ code

	3.2 Table descriptor
	3.2.1 Table tag

	3.3 Generating the intermediate XML file

	4 Basic language elements
	4.1 Assignments
	4.1.1 Operators

	4.2 Data types
	4.3 Symbol roles
	4.4 Functions

	5 Advanced language elements
	5.1 Expandable symbols
	5.1.1 SV
	5.1.2 PAR
	5.1.3 CVAR
	5.1.4 SPC
	5.1.5 Triplet notation

	5.2 Rules
	5.2.1 Attributes
	5.2.2 Handlings
	5.2.3 Non-keyword rules
	5.2.4 Exempt, Only
	5.2.5 Other rules

	5.3 Mechanism of expansion
	5.3.1 Simple expansion
	5.3.2 Advanced expansion
	5.3.3 Even more advanced expansion

	6 Special calculations
	6.1 Summation, multiplication
	6.2 Gujer matrix calculations
	6.3 pH calculation
	6.4 Event handling

	7 Namespaces
	7.1 Implicit namespaces
	7.2 Explicit namespaces

	8 Using multiple models
	8.1 Default model
	8.2 Using non-default models

	9 Advanced topics
	9.1 SMT command line usage
	9.2 Attribute and handling propagation
	9.3 Algebraic loops
	9.3.1 1 Solving the equation system
	9.3.2 Process code example for automatic loop breaking
	9.3.3 Process code example for manual loop breaking
	9.3.4 4 Complex equation system

