

“Assembly of Japanese bicycle require great peace of mind!”

–Robert M. Pirsig: Zen and the Art of Motorcycle Maintenance

Blank page

iii

1 INTRODUCTION .. 5

1.1 WHAT IS SUMOSLANG? ... 5

2 STRUCTURE ... 6

2.1 GENERAL SETTINGS ... 7
2.2 PROCESS MODEL .. 7
2.3 PROCESS UNITS .. 8

2.3.1 Composite process units .. 9
2.4 PROCESS UNIT HIERARCHY .. 10

2.4.1 Plantwide code .. 11

3 PROCESS CODE LAYOUT ...12

3.1 TABLE STRUCTURE .. 12
3.1.1 Simple table ... 13
3.1.2 Arrays .. 13
3.1.3 if block ... 16
3.1.4 C++ code .. 16

3.2 TABLE DESCRIPTOR .. 17
3.2.1 Table tag ... 17

3.3 GENERATING THE INTERMEDIATE XML FILE ... 19

4 BASIC LANGUAGE ELEMENTS ...20

4.1 ASSIGNMENTS.. 20
4.1.1 Operators .. 21

4.2 DATA TYPES ... 21
4.3 SYMBOL ROLES ... 22
4.4 FUNCTIONS ... 22

5 ADVANCED LANGUAGE ELEMENTS ..24

5.1 EXPANDABLE SYMBOLS .. 24
5.1.1 SV... 24
5.1.2 PAR .. 25
5.1.3 CVAR .. 25
5.1.4 SPC ... 25
5.1.5 Triplet notation.. 25

5.2 RULES .. 26
5.2.1 Attributes .. 26
5.2.2 Handlings... 27
5.2.3 Non-keyword rules .. 28
5.2.4 Exempt, Only ... 29
5.2.5 Other rules ... 30

5.3 MECHANISM OF EXPANSION ... 31
5.3.1 Simple expansion ... 31
5.3.2 Advanced expansion .. 32
5.3.3 Even more advanced expansion .. 32

6 SPECIAL CALCULATIONS ...33

6.1 SUMMATION, MULTIPLICATION ... 33
6.2 GUJER MATRIX CALCULATIONS ... 34
6.3 PH CALCULATION .. 35
6.4 EVENT HANDLING ... 37

7 NAMESPACES ...38

7.1 IMPLICIT NAMESPACES ... 38
7.2 EXPLICIT NAMESPACES ... 39

iv

8 USING MULTIPLE MODELS ...40

8.1 DEFAULT MODEL .. 40
8.2 USING NON-DEFAULT MODELS .. 41

9 ADVANCED TOPICS ..43

9.1 SMT COMMAND LINE USAGE .. 43
9.2 ATTRIBUTE AND HANDLING PROPAGATION ... 45
9.3 ALGEBRAIC LOOPS ... 45

9.3.1 1 Solving the equation system ... 46
9.3.2 Process code example for automatic loop breaking .. 46
9.3.3 Process code example for manual loop breaking .. 48
9.3.4 4 Complex equation system .. 50

5

1 Introduction

Assembly of a processing plant model in Sumo require great peace of mind, to extend Mr.

Pirsig’s observation. This documentation contains the elements of the Sumo modeling language.

Although it is not simple, once mastered, wonderful models can be created in a well-organized

and documented fashion. From now on the modeling language will be referenced as

SumoSlang.

1.1 What is SumoSlang?

SumoSlang is the modeling language used in the Sumo process modeling software. It was

developed with modeling very large systems in mind: containing process units and process

models. It was developed also with engineers in mind: write your equations in a familiar

environment namely Microsoft Excel.

The naming, organization of tables and their content on various Excel worksheets and the

keywords used is known as SumoSlang. Some of the main features of the language are:

• assignment oriented

o assignment: only one variable is allowed at the left-hand side of the equation

o formatted equation: symbols with arbitrary formatting (subscript, superscript,

Greek characters) are allowed on both sides of the equation

• easy to comment and add notes

• documentation and code are at the same place

• algebraic calculations

• dynamic calculations

6

2 Structure

The Sumo process modeling software contains a standard library of process code. The elements

of this library are process code files in the above-mentioned Excel document format which

represents the source code of the library. There are three process code types:

• general settings—with the fixed file name systemcode.xlsx

• process model—with arbitrary file name, e.g. Sumo1.xlsm (the model files usually

contain macros for validation, hence the .xlsm extension)

• process unit—with arbitrary file name, e.g. CSTR with diffused aeration and input
DO.xlsx

SumoSlang is processed by the so-called Sumo Model Translator (SMT) first, which

understands SumoSlang and converts it to an intermediate XML format for further processing.

This documentation will discuss the SumoSlang features and rules from the SMT point of view.

The graphical user interface of the Sumo modeling software may impose other requirements on

the process code e.g. various worksheets containing irrelevant data for the SMT.

The standard library source code is placed in a specific folder structure shown on the

following picture, where the Sumo install folder is open in Windows Explorer.

Figure 1 Sumo process code structure

The red highlighted folders are used by the SMT to lookup for process code files mentioned at

the beginning of the chapter (settings, models, process units).

It is considered a good practice to not modify the standard library, but place user code in

the My Process Code folder which has the same inner structure as Process Code.

The following sections will explain the structure of the different process code files, what are

their mandatory elements and what can be freely chosen by process code authors.

7

2.1 General settings

Sumo settings are stored in a special Excel file named systemcode.xlsx. The name of this file is

mandatory.

Figure 2 shows the first worksheet of the system code with other worksheets expected by

the SMT highlighted in red:

• System settings—various system wide settings and constants

• Functions—function declarations recognized by the SMT

• Constants—scientific constants used in calculations

• Sumoconv—dictionary of special (Greek) character conversions to C++ code

• Species—dictionary of chemical species

Figure 2 The systemcode.xlsx file containing systemwide settings. The worksheets highlighted in red are

expected by the SMT.

2.2 Process model

The model files contain various scientific equations, matrices and parameter values used in

simulations. Process units may reference one or more models thus, the variables and equations

of the included model(s) are available in process unit calculations.

Figure 3 shows a model file example with frequently used worksheets highlighted.

8

Figure 3 Excel file containing model code. The worksheets highlighted in red are usually used in process unit

calculations.

Some of the worksheet names are mandatory others are arbitrary. The mandatory names are

expected by the SMT when a shorthand symbol is evaluated (see subsections of 5.1 Expandable

symbols).

The fixed names are:

• Parameters—is a list of parameters having fixed numerical values used in calculations

• Species—a dictionary of equilibrium species used in pH calculations

• Components—contains state variables in dynamic systems, or model components in

algebraic systems (e.g. chemical species that determine the chemical composition of the

investigated solution: Ca2+, Mg2+, etc.)

• Calculated variables—contains equations calculating variables dependent on other

variables

Other worksheets with arbitrary names are:

• Model—contains the so-called Gujer or kinetic matrix, which is a table used by process

units to calculate biokinetic reactions.

• pH—contains all the information to calculate the equilibrium species in reactions that

are considered during pH calculations

The model may contain other, user defined worksheets which can be referenced in process unit

code. The referencing methods are discussed in section 5.1 Expandable symbols.

2.3 Process units

The process code contained in process units describe the behavior of bioreactors, flow elements

separators and other modeled elements. As mentioned above the process units may “pull in”

variables and equations from one or more model files and use them in their calculations.

The process units should be able to work with different models which means that they

cannot reference models by name, but some other mechanism. See again section 5.1 Expandable

symbols for more information.

9

Figure 4 shows the code of a process unit with the commonly used worksheets highlighted.

The names of these worksheets are mandatory.

• Unit—a dictionary of attributes and component handlings valid in the process unit (see

sections 5.2.1 Attributes and 5.2.2 Handlings)

• Parameters—contains the simulation parameters modifiable by the user in the Sumo

process modeling software. These are valid only in the process unit, but model

parameters can be “pulled in”.

• Code—contains the process code of the process unit grouped in so-called code locations

(see section 3.2.1 Table)

Figure 4 Process unit file with the commonly-used worksheets highlighted in red.

Other, optional worksheets usable by the SMT can be added to the process unit. These

worksheets also have mandatory names and they are the following:

• Components—it is like the Components in the model but valid only in the process unit.

They may overwrite model components.

• Functions—it is like the Functions in the systemcode.xlsx but valid only in the process

unit.

• Structure—it is present in composite process units. Contains the list of components and

connections between them, as well as connections to the outside world.

2.3.1 Composite process units

A process unit may consist of several subunits. The components are separate process units with

their own process code files. Grouping them in a single process unit hides the internal

complexity, the group behaving like a black box with few connections to the outside world.

The Structure worksheet introduced in the previous section contains this grouping

information. Figure 5 shows an example of the Structure sheet of a composite unit.

Columns of the component table play an essential role in how the composite unit controls

its components (see section 2.4 Process unit hierarchy).

10

Figure 5 Structure worksheet of a composite process unit showing three components, their internal connections

and the external connections of the whole composite unit.

2.4 Process unit hierarchy

In the Sumo software the modeled plant is organized in a process unit hierarchy. The root

element is (an artificial) composite process unit which lists the participating process units as

components. These process units may be simple or composite too.

In the previous section it was mentioned that composite process units (parents) controls its

components (children). This control is represented by passing so-called attributes, handlings

and parameters from the parent to the children (see sections 5.2.1 Attributes and 5.2.2

Handlings).

The artificial root element is provided for the user by the Sumo software to be able to set

plantwide simulation properties and parameters. The Unit and Parameters worksheets of a

process unit contains attributes, handlings and parameters valid in that process unit, but these

values can be overwritten by the root element or by a parent composite unit (if the process unit

is part of one).

The intention of overwriting can be declared in the columns of the component table present

on the Structure sheet of the parent process unit. On Figure 5 the Unit component table has

columns between Label and Models. Those are attribute names and the values in the different

rows are passed to the corresponding process unit.

In a similar manner, columns after the Models column represent handling names and the

values in the different rows are passed to the corresponding component (the example does not

contain such columns).

Where a cell in a given column is empty no value is passed to the component unit thus the

value defined in the component unit prevails.

Figure 6 shows the hierarchy of four modeled process units (PU1, PU2, PU3, PU4) where PU1

and PU4 are composite units consisting of two process units: PU1,1, PU1,2 and PU4,1, PU4,2

respectively. The example shows on the left side of the hierarchy how attributes and handlings

can be passed from parent to children, while the right side shows two methods for passing

model parameters from parent to children.

11

Figure 6 Simple process unit hierarchy. The dashed line between the Root and the Model means that the Root is

not the parent of the Model, only uses it.

Parameter passing has a special name in SumoSlang: parameter inheritance. It is explained in

section 5.2.1 Attributes in more detail. Here it is enough that when inheritance is ON the

parameters come from the parent of the process unit, otherwise from the model. The root

process unit always takes its parameters from the model.

2.4.1 Plantwide code

Global settings and properties can be given in the so-called plantwide code file. This is provided

by the Sumo software per modeled plant and it is not part of the process unit library

accompanying the software.

One can think of the plantwide code as if the software would give access to some elements

of the artificial root process unit. The plantwide code file looks like a normal process unit, it has

Unit, Parameters and Code worksheets and the data given on these worksheets will be

incorporated in the root element. However, the user cannot reach the Structure sheet of the root

element through plantwide code.

Composite process units can reach parameters and other variables of their direct children

by prefixing the variables with the child unit name like this:

ChildName..variable

The plantwide code is an exception at the moment of this reference rule. When a variable

from a child unit (direct or deep in the hierarchy) is needed in plantwide calculations it should

be qualified with its full namespace prefix (see chapter 7 Namespaces).

Modeled Plant The model
used in all units

Attributes and handlings
can be passed from parent
to children. This is optional.

Process units may
inherit model
parameters from
their parents... ... or they can use

them directly
from the model.

12

3 Process code

layout

Figure 2 shows a worksheet containing typical process code. The process code rows are placed

in neat tables which gives an organized look and feel to the code. The tables are separated by at

least one blank row. Note that the pretty formatting, coloring of the tables does not influence

how they are perceived by the SMT. For example, if the user would insert some text in cell B10,

the SMT would include it in the first table. The tables contain the process code and anything

outside of them is considered as comment and ignored.

3.1 Table structure

Every table should have a

• descriptor—a 3-segment cell range B2:D2 in the example mentioned above

o table type—cell B2, it can be empty or may contain one of the following

keywords

▪ Array

▪ if block

▪ C++ code

▪ Newton-Raphson—used in model code on the Calculated variables

worksheet

▪ Port, Attribute, Model, Handling—used on the Unit worksheet of process

units

▪ SolverConfiguration—meant to replace Newton-Raphson table types in

tandem with Equilibrium code locations (see 9 Advanced topics)

o table name—cell C2, contains a meaningful grouping name of the table content

o table tag—cell D2, like table type it can be empty or may contain one of the

following keywords

▪ Pure—used only on the Functions worksheet of system settings

▪ Type(arg)—used in model code (Parameters, pH, Calculated variables) for

further grouping tables

▪ Codelocation(arg)—used on Code worksheet of process units. The

argument may be one or more of the following keywords

• ZeroTime

• DataComm

• Integrated

• Equilibrium

▪ Scope(arg)—used on Unit worksheet of process units

• header—the range B3:J3 in the example. The number of columns is arbitrary. Some of

the column header names are fixed (e.g. Symbol, Name, Value, Rule) others are arbitrary.

• body—the code lines grouped in the table (the body can be empty). Its range is B4:J9 in

the first table of the example.

13

3.1.1 Simple table

Usually the range of a table is determined by the content of the Symbol column and the header

row as shown on the following picture.

Figure 7 Table boundaries.

The key elements like descriptor, header and body described in the previous section are

determined relative to the Symbol cell. The table extends to the right and down while the Symbol

row and column contains non-empty cells.

Some table types do not follow this structure but should comply to some different structure

nevertheless. Such table types are the Array, if block and C++ code.

The rows of a code table represent assignments in the form of a = b, or more precisely

a  b (b goes to a). The left-hand side of the assignment is in the Symbol column of the table,

while the right-hand side is in one of the Value or Default or Expression columns. In some cases,

the Expression column may break in several parts (see 3.1.2 Array).

3.1.2 Arrays

Arrays are fundamental in every programming language. In SumoSlang they can be specified in

three ways. The first is a simple table containing a row with its symbol in array notation e.g.

var[]. SumoSlang require a so-called array rule in the Rule column of the array row, like [n],

where n is the size of the array and it is declared on the Parameters sheet of a process unit file.

The examples were taken from the Layered SBR with calculated DO.xlsx.

Figure 8 shows an example of array size definition. On the Parameters worksheet the right-

hand side of the assignments is contained in the Default or Value column.

Figure 8 Dimension type variable definition in row 51.

14

An array size definition requires a Dimension rule specifying that it is an array dimension

type variable. It is worth mentioning that SumoSlang handles only one-dimensional, real

number arrays for now.

Figure 9 shows an example of simple arrays in various code tables.

Figure 9 Array rows in two tables: rows 5, 10, 11 contain arrays with their symbol ending in brackets and with

[n] in their Rule column.

The SMT will unwind an array row to a loop where the elements of the array will be

assigned to the right-hand side contained in the Expression column. In our example n is defined

as 9 meaning that all arrays with rule [n] have 9 elements. Row 5 for example will be unwound

as follows:

SV[1] = SV_0[1]
SV[2] = SV_0[2]
...
SV[9] = SV_0[9]

or more precisely to an equivalent loop. Note that the expression is also in array notation, i.e.

ending in brackets. Row 10 contains an example where every element of the array is assigned

the same variable (no array notation in the expression). As an exercise try to unwind the array

in row 11.

The second option to define an array is to set the table type to Array in the table descriptor.

The SMT is prepared that the Expression column may be broken in several parts. Figure 10

shows an example of this array type.

15

Figure 10 Array table type beginning in row 137 ending in 139.

In this array type a more fine-grained unwinding process can be specified; for example, the

first and the last element will be assigned different values compared to the rest of the array:

Js.XTSS[1] = content of the Expression 1 column
Js.XTSS[2] = content of the Expression i(2 to n-1) column where i is 2
...
Js.XTSS[8] = content of the Expression i(2 to n-1) column where i is 8
Js.XTSS[9] = 0.0

Please note that indexer variables (i in the second Expression column) can be used only in

their column, constant indexers can be used in all Expression columns (for example the first

Expression column contains XTSS[1] and XTSS[2] but XTSS[n] could be used as well).

The third option is the so-called composite array. It is like the previous one, but the

unwinding process is even more sophisticated. Figure 11 shows an example of a composite

array table taken from the MBBR with fixed film thicknes.xlsx.

Figure 11 Composite array, the terms in the rows without symbol are summed by Expression columns.

The rows with empty symbol define summation terms for all elements of the array. The

array variables are identified by a non-empty symbol and a [n] rule in rows 146, 151, 159

respectively. The result of unwinding the first array is as follows:

16

dM,SV[1] = (inp..F_SV + (-outp..F_SV) + ... + rateF_SV[1])
dM,SV[2] = (dM,diff,SV[2] + 0 + rateF_SV[2])
...
dM,SV[4] = (dM,diff,SV[4] + 0 + rateF_SV[4])

if the array size n is 4 in the example and the summation terms of the first array are taken from

rows 140 to 145. As the example shows, multiple composite arrays can be defined in a single

table. Sometimes it is worth to split the arrays in separate tables, for example the last array

could be extracted in its own table, resulting in an opportunity to simplify the original one. It is

obvious that Expression 2 and Expression i(3 to n) columns have the same terms for the first two

arrays, so they could be combined in a single Expression i(2 to n).

Every summation term row may contain filtering rules influencing the resulting sum (see

section 5.2.1 Attributes to learn about attribute filtering). In the example the last term,

rateF_L.SV[i] is included only in case of Reactive process units.

3.1.3 if block

Conditional execution of program code is another important element of a programming

language. In SumoSlang condition execution is declared in tables with type if block. Figure 12

shows an example of if block taken from PID controller.xlsx.

Figure 12 Example for if block table.

This table type has some additional columns before Symbol, namely Operator and Condition.

The Operator column may contain only the keywords if, else if, or else. An if operator

always should have a matching else or else if pair and the symbols in their code rows should

be the same (see the symbols in rows 23-25 and rows 27-29).

The Condition column contains relational operators similar to the C language with one

exception: the assignment symbol = is recognized as the equality operator ==, meaning that in

the example control = 1 would be the same as control == 1.

Nested if blocks are supported too, in that case there are many numbered Operator columns

before the Condition column.

3.1.4 C++ code

Process code may include blocks of raw C++ code to perform calculations that are clumsy or

impossible in SumoSlang. The Sumo variables used as input arguments by the C++ code are

listed in the Inputs column, while the generated output variables are listed in the Outputs

column.

17

The range of a C++ code table type is determined with help of the Inputs keyword (used like

Symbol in simple tables) and the Expression keyword. The table ends at the row of the last non-

empty cell in the Expression column.

The code in the Expression column may contain variables with a NAMESPACE__ prefix. This

prefix will be replaced by the SMT with the namespace of the process unit (see chapter

 7 Namespaces).

Figure 13 C++ code example. The code lines in the Expression column are included in the generated XML after

proper namespacing.

3.2 Table descriptor

Table names are part of the table descriptor range and on the Parameters worksheet (model or

process unit) they should be unique. This is also true for tables with the same table type (if

block, Array etc.) on the Code worksheet.

3.2.1 Table tag

This is the third section of the table descriptor right after the table name. It may contain table

grouping information like Codelocation (which is a keyword) or code filtering information. The

latter is an arbitrary text that can be used in the Rule column of an expandable code line to

restrict the expansion from tables with that text in their table tag (see 5.3 Mechanism of

expansion).

In the process code library provided by the Sumo software the most used table tag is

Codelocation and Type(...).

Type is used in model files for example to group different equation types (kinetic,

stoichiometric, equilibrium, energy) on the Calculated variables worksheet. Type and its

arguments are not keywords; the process code author can define arbitrary grouping texts which

can be used in process units.

Figure 14 shows the Calculated variables worksheet of a model file with Type(Kinetic)

groups. This group identifier is then referenced in the Rule column of a code line in a process

18

unit meaning that the equations from all Type(Kinetic) tables will be included from the model

(see also 5.2.3 Non-keyword rules).

Figure 14 Type(...) table groups in a model file and referencing them in the Rule column of a process unit

Codelocation is used for grouping process unit code in groups (ZeroTime, DataComm etc.)

described in section 3.1 Table structure. The previous example shows two Integrated and one

DataComm code location in column D of the visible tables. The grouping, which becomes

important in simulations, will be reflected in the generated XML file.

Figure 15 The generated XML file with collapsed nodes for better overview.

19

Figure 15 shows an overview of the generated XML file with collapsed nodes except the main

<model> node and <codeblocks> where the code locations start in row 10759. Code locations

with content inside are collapsed in the example.

The Codelocation may specify multiple code blocks together with code sections. The syntax

is as follows:

Codelocation(block[,section] … [;block[,section]])

where

• block—is the code block name

• section—is the code section name under the block node

• , —is the section separator

• ; —is the block separator

Elements in brackets are optional. If section is not specified, the default “1” to “n” is used.

If multiple distinct blocks are listed as arguments, the code lines in that table will be repeated in

the XML within those blocks.

3.3 Generating the intermediate XML file

The project assembled in the Sumo modeling software contains the model, the process units and

other settings. The Excel file format representing the process code is just a convenient, user-

friendly format to store everything needed by the software.

The equations contained in the Excel files are translated by the SMT to an intermediate

XML format which contains the instructions for the Sumo numerical engine to perform the

simulation. The XML file then is transformed to an actual executable file usable by the Sumo

numerical engine.

The SMT is used by Sumo automatically, but it can also be used manually. In the latter case

the user should provide the Root element, discussed in section 2.4 Process unit hierarchy, of the

project which contains the structure of the modeled plant.

20

4 Basic language

elements

The following subsections contain the various SumoSlang elements in greater detail with

examples.

4.1 Assignments

The most fundamental element of the SumoSlang is the assignment. Section 3.1.1 Simple table

presented how an assignment is specified in a simple table. Figure 16 shows the table Gujer

matrix on the Code sheet of a process unit.

Figure 16 Table containing assignments on the Code worksheet.

From the example the following information can be extracted:

• it is a simple table (no table type)

• the table represents the group of assignments named Gujer matrix

• the assignments will end up in the Integrated code location in the generated XML file

• the elements of the assignments are contained in the Symbol and the Expression columns.

The three assignments in the example are:

o rMODEL.Model.j[] = MODEL.Model.Rate[]

▪ the Unit of the left-hand side variable is coming from MODEL.Model.Unit

(see 5.1 Expandable symbols)

▪ it has two rules: Reactive and [n] (see 5.2 Rules)

o vMODEL.Model.j,SV[] = MODEL.Model.SV[]

▪ it has two rules: Reactive and [n]

o rate_SV[] = vMODEL.Model.j,SV[] * rMODEL.Model.j[]

▪ the Unit of the left-hand side variable is explicitly given: g.m-3.d-1

▪ it has three rules: sum(MODEL.Model.j), Reactive and [n]

21

The most important columns of the table from the point of view of an assignment are

Symbol and Expression. They contain the left-hand side and the right-hand side of the

assignment; the other columns contain auxiliary information (e.g. the unit or the different

filtering rules) used by the Sumo software.

The symbol on the left-hand side of the assignment is a variable while the right-hand side

may contain variables, numerical values or constants, string constants (literals), functions and

operators. Variable names should start with a letter, may contain numbers, comma characters

(,), single dot characters (.) or single underscore characters (_) and may have subscript or

superscript parts. The following variable name contains all the mentioned features:

Tlocal,max_P12.V1.0_x

Double dot (..) and double underscore (__) are not allowed in variable names as they are

namespacing keywords (see 7 Namespaces).

4.1.1 Operators

The assignments may use the following arithmetical, logical and relational operators:

Symbol Meaning

+ addition

- subtraction

* multiplication

/ division

^ exponentiation

&& logical AND

|| logical OR

! logical NOT

== relational Equal

!= relational Not Equal

< relational Less than

> relational Greater than

<= relational Less than or Equal

>= relational Greater than or Equal
Table 1 Operators of SumoSlang

It is worth noting that the SMT automatically provides protection against division by zero

errors by adding a very small number to every quotient.

4.2 Data types

The following data types are used in SumoSlang:

• Integer

• Real

• Boolean

• String

• Dimension—array size by a given dimension (only one at the moment)

The data type of a variable by default is Real. There is no type inference from the right-hand

side (i.e. the SMT cannot determine the type of the left-hand side variable). The correct type

22

should be specified by the process code author in the Rule column of a given code line, using

one of the type names from the previous list.

4.3 Symbol roles

SumoSlang fits the symbols it finds in one of the following roles:

• Constant—various numerical constants (physical, chemical) used in calculations

contained on the Constants worksheet of the systemcode.xlsx

• Parameter—simulation parameters modifiable by the user of the Sumo software;

everything on Parameters worksheets except dimensions.

• State variable (SV)—dynamic simulation state variables; every variable matching a

symbol found on the Components worksheet of either a process unit or a model. The

following conditions should be met also:

o the matching symbol on the Components worksheet of the model should have

Integrated handling (see 5.2.2 Handlings)

o a corresponding derivative of the symbol should be present in the process unit

code

• Derivative—derivatives of state variables; every variable with the symbol equal to

d<state variable>_dt where <state variable> is the place holder for a symbol with SV

role

• SystemState—every other variable has this role (a better role name should be found).

The role of the various symbols is carried on to the XML file and is used by the simulation

core of the Sumo software.

4.4 Functions

The Functions worksheet in systemcode.xlsx contains the function declarations used in process

code. The usual mathematical functions (more precisely their C++ name) are listed in a separate

table tagged as Pure. Functions in other tables are Sumo functions expressed in C++ code.

The function declaration (name and arguments) is in the Symbol column, its body is in the

Expression column. The syntax is the following:

[type][array_sign] name(

[type][array_sign] [name][;]
[type][array_sign] [name]…)

where

• type is one of the following keywords

o REAL—this is the default if type is omitted

o INT—Integer type

o BOOL—Boolean type

o STRING—String type

• array_sign is the [] character pair

• name—any name starting with a letter and containing letters, numbers or underscores

• ; —argument delimiter

The elements in brackets are optional. Where type is missing REAL will be used. The

following example shows the Average function declaration:

23

Average([] x; INT start; INT end)

where Average is the function name. The return type and array sign are missing which means

that the function will return a REAL number. The missing type specification and the given array

sign of the first argument x means that it is an array of REAL numbers. Both start and end are

integer numbers.

24

5 Advanced language

elements

The following sections describe how process code can be written in a very terse form. Terseness

is achieved by the introduction of so-called expandables and filtering rules. Without these the

process code would be much larger and more verbose. To see the difference, one can compare

the Code worksheet of a process unit with the generated XML file which contains the fully

expanded version of the process code.

5.1 Expandable symbols

The SMT recognizes variables written in a special, abbreviated or shorthand notation. During

translation, these are replaced with a set of symbols contained in the process model. This means

that instead of one code line there will be n code lines where n is the number of symbols

included by the process called expansion.

The process code shipped with the Sumo software provides syntax highlighting of

expandables as Figure 16 shows SV and the triplet of symbols starting with MODEL are colored

blue.

5.1.1 SV

SV stands for state variable. A symbol containing this shorthand will be replaced with a set of

symbols from the Components worksheet of the model. This set may contain all symbols from

the model or a subset of them. Various filtering methods are available to specify which state

variables are needed (see 5.2 Rules).

For state variables, besides rules, an alternative filtering method is available to write terser

process code. These shorthand notations are also recognized by the SMT:

• L.SV—selects liquid phase state variables

• G.SV—selects gas phase state variables

• S.SV—selects solid phase state variables

• sSV—selects dissolved components (or small particle size state variables)

• cSV—selects colloidal components

• xSV—selects particulate components

The phase and particle size shorthand are composable (in this order). L.sSV for example

means liquid dissolved components. These are keywords and the L, G, S, s, c, x prefixes are not

taken from the content of the Phase and Particle size columns (please note the case difference of s,

c, x).

The SV expandable is a shorthand of the MODEL.SV.Symbol notation (see 5.1.5 Triplet

notation). Note that L.SV can be replaced with the rule Phase(L) and xSV with the rule Particle

size(X), (see section 5.2.3 Non-keyword rules) while the Symbol column would simply contain

SV. In case of rule filtering, the argument of the rule should match the content of the Phase and

Particle size columns (L, G, S in case of phase and S, C, X in case of particle size). If the column

25

Phase would contain solid, the rule would be Phase(solid) while the shorthand filtering

method still would be S.SV.

It is important to mention that this alternative SV filtering method (L.SV, xSV etc.) works

only with default models i.e., the first model attached to the process unit (see 8.1 Default

model). If more than one models are attached to the process unit and the process code author

wants to reference state variables from the second (third etc.) model, the full triplet syntax

should be used, and the filtering should be implemented with rules instead of a shorthand. For

example, L.SV in MODEL_2 should be written as MODEL_2.SV.Symbol with Phase(L) rule.

5.1.2 PAR

PAR stands for parameters. This shorthand is replaced by symbols found on the Parameters

worksheet of a model file like in the case of state variables. These are simulation parameters

available to the user of the Sumo software for modification.

Filtering is possible by specifying a Type(...) selector in the Rule column in the process unit

because the tables on the Parameters worksheet are grouped in Type groups.

PAR is a shorthand of the MODEL.PAR.Symbol triplet notation.

5.1.3 CVAR

CVAR stands for calculated variables. This shorthand is replaced by symbols found on the

Calculated variables worksheet of a model file. Filtering is the same as in case of PAR shorthand:

use a Type(...) selector in the Rule column in the process unit.

CVAR is a shorthand of the MODEL.CVAR.Symbol triplet notation.

5.1.4 SPC

SPC stands for species. This shorthand is replaced by symbols found on the Species worksheet of

a model file. As Species contains a simple table without any grouping, the whole list of symbols

is “pulled in” during expansion.

SPC is a shorthand of the MODEL.SPC.Symbol triplet notation.

5.1.5 Triplet notation

The triplet syntax allows a general way of referencing model parts in process code. This

notation always has three elements:

• model identifier—represents the model ID or model variable name used on the Unit

sheet of a process unit. This allows a name-independent reference to the model used by

a process unit. Note that MODEL is not a keyword, it can be PANCAKE for example, if that ID

is used on the Unit worksheet of the process unit to identify a model.

• worksheet name—selects a worksheet in the model file. Shorthand notation (SV, PAR,

CVAR, SPC) or explicit names are allowed. The worksheet name may contain whitespaces.

• column name—selects a column in a code table. Shorthand notation or explicit names

are allowed. If the column name contains white spaces the whole triplet should be

placed in quotation marks (e.g. “MODEL.PAR.Low limit”).

Figure 16 contains various examples of the triplet syntax usage. These are:

• rMODEL.Model.j[]—where the subscript index of the variable r will be replaced with symbols

taken from the default model file, worksheet Model and column j.

• MODEL.Model.Rate[]—where the expression will be replaced with symbols taken from

the model file, worksheet Model, column Rate.

26

• MODEL.SV.Name—where the expression will be replaced by symbols taken from the

default model file, worksheet Components, column Name. Note that the context of the SV

shorthand is recognized, it represents a worksheet name, and it is replaced accordingly.

• MODEL.Model.SV[]—where the expression will be replaced with symbols taken from the

default model file, worksheet Model, column name equal to symbols from the

Components worksheet. This is a tricky expansion (see more in 5.3 Mechanism of

expansion).

As the introduction of section 5.1 explained: the expansion means replacing one code line

with many code lines.

5.2 Rules

The predominant usage of rules in process code lines is filtering equations “pulled in” from the

model or other process units. Data types may also be specified in rules (see 4.2 Data types).

Filtering capabilities are related to attributes and handlings specified in process units

(model files do not contain a Unit worksheet with attribute and handling specifications).

The evaluation of the Rule column results in a single Boolean value. If true, the code line (or

its expansion) will be passed otherwise not.

The Rule column may contain several distinct rule elements separated by a semicolon. The

rule result will be the composition of the partial results with the AND relational operator.

5.2.1 Attributes

Attributes are user defined symbols on the Unit worksheet of process units, or columns of the

Unit component table on the Structure worksheet of a composite process unit. The attributes can

be used in the Rule column of code lines (process unit or model) to skip some of them during

expansion.

Attributes have an implicit Boolean data type. The SMT takes their value, or their negated

value if they have a Non- prefix, to evaluate the rule in a given code line.

Section 2.4 Process unit hierarchy described parameter inheritance in a nutshell. Figure 17

shows how it is implemented with the help of attributes. Parameter inheritance means model

parameter inheritance (there are other parameters defined in process units). Model parameters

can be altered by process units and their children (if any) may want to specify which model

parameters they need, hence the need of the two different inheritance methods.

The Rule column of row 117 on the Parameters worksheet contains a Non-InheritkinPAR

attribute while row 468 on the Code worksheet contains its counterpart, InheritkinPAR. The Unit

worksheet of the process unit contains the definition of the InheritkinPAR attribute defaulting

to TRUE.

Please note that the Default column of the inheritance table on the Parameters worksheet

contains a reference to the model: MODEL.PAR.Default which means that model parameters in

the process unit will be equal to values coming from the model. (This is shown with the dark

green line on Figure 6.)

On the other hand, the Expression column on the Code worksheet contains a reference to the

parent process unit: Parent..PAR which means that model parameters in the process unit will be

equal to values coming from the parent. (This is shown with the light green line on Figure 6.)

27

When InheritkinPAR is TRUE (inheritance ON) the code lines from the Code sheet prevail,

otherwise the code lines from the Parameters sheet (the Non- prefix means negation as described

before). Quite simple.

It is worth noting how with a few lines of code the process code author can refer to a large

number of code lines from the model, tailoring them as he or she sees fit.

Figure 17 Parameter inheritance implemented with attributes on the Parameters and Code worksheets.

5.2.2 Handlings

Handlings specify how state variables should be treated during dynamic simulations. This is a

filtering method of code lines in process units. They are defined in the Handling column on the

Components worksheet of models.

Handlings may have one of the following values:

• Integrated

o The Component marked as “Integrated” will be declared as a true State Variable

and will have a derivative. This is the default for most components in a dynamic

model.

• Set

o The Component marked as “Set” will become a parameter, will not have a

derivative. An example is DO – when just an input value is desired (e.g. 2 mg/L),

it is not necessary to design and tune a controller, but change this Component to

Set and assign a value.

• Algebraic

o The total rate (νij*rj) will be calculated (e.g. total CO2 production rate) without

integrating the variable itself, so it is not present in the code.

• Balancing

28

o State variables with this handling are not taken in consideration during

expansion, they are simply used to mass balance the model components in the

model Excel sheet. An example is N2 – if dissolved and gaseous nitrogen is not

important from the process standpoint but it is important to see that the N

balance closes, Balancing rule can be used. The variable will not be present in the

final compiled code.

These are the default handling values of state variables. The default values can be changed

on the Unit and Structure worksheets of process units. The handling symbols specified in the

process unit refer to state variables present in the model.

5.2.3 Non-keyword rules

Section 3.2.1 Table explains the usage of Type(...) table grouping info in tandem with a Type(…)

rule. The rule is an example of the more general table descriptor rules, namely the Type(arg1; …

argn) construct. This kind of rule allows code lines to be included from all tables matching the

arguments. The source of the inclusion is usually the model, but it can be the parent or other

direct child process units.

The Handling(…) rule is an example of the more general table header rules. A table header

rule consists of a column name and an argument list representing distinct values from that

column. The context, i.e. the worksheet where the column should be present, is determined by

the SMT from the Symbol column of the process unit code line.

Figure 18 shows an example of table header rule in row 5 of the Code worksheet of a process

unit.

Figure 18 Handling(...) rule in row 5 of the Code worksheet.

The worksheet referred is Components of the model file because the Symbol column contains

an SV (see 5.1.1 SV). The column name in the table header should be Handling and its content

Integrated. The SMT will include only the rows where Handling contains the value Integrated.

It should be mentioned that in case of the worksheet contains multiple tables, all tables

would be parsed by the rule, but only rows from matching tables (having Handling column) will

be allowed.

If the Handling(...) rule contains more than one argument, all model rows with a

matching Handling value would be allowed in the expansion. This means an OR relationship

between the rule arguments.

The SumoSlang is flexible enough to let the user define arbitrary table descriptor (mostly table

tags) or table header rules. It is important to mention that Type and Handling are not keywords

29

in SumoSlang (note, however, that Handling appears as table type keyword on the Unit

worksheet of process units). Any rule written in a function syntax, i.e. name(arg1; … argn), is

tried to be interpreted as a table descriptor rule then a table header rule. This allows the user to

introduce other grouping and filtering names than those supplied with the Sumo process code.

5.2.4 Exempt, Only

These two keywords are explicit symbol filters during expansion. They take a list of symbols as

arguments and may contain expandables.

Exempt excludes the assignments resulting after expansion which have a left-hand side symbol

listed in the arguments.

Only includes the assignments resulting after expansion which have left-hand side symbol

listed in the arguments.

The following example shows a model which has some gas phase state variables and a

hypothetical process unit using Exempt(...) and Only(...) rules to skip or include some of

these state variables.

Figure 19 Exempt and Only rules in action.

The model in the example contains 6 gas phase state variables (in rows 59-64). The

Exempt(GCO2; GNH3) rule in row 363 results in the following expansion of the symbol:

SGCH4,bub,sat[]
SGH2,bub,sat[]
SGO2,bub,sat[]
SGN2,bub,sat[]

30

while the symbol in row 364 will be expanded in the following variables:

SGCO2,bub,sat[]
SGNH3,bub,sat[]

5.2.5 Other rules

Other less commonly used rules are:

• Step(arg)—in case of array assignments it specifies the incrementation step of the loop

variable (as in section 3.1.2 Arrays was described, the elements of the array are assigned

in a loop). The step can be positive or negative.

• Call—used in event handling (see 6.4 Event handling)

• sum—array summation. The following example shows how to calculate the sum of array

elements given in the Expression column into scalar variables given in the Symbol

column.

Figure 20 Code lines with sum rule stating that all elements of the arrays given in the Expression column

should be added. The symbol in these cases represents a scalar variable.

• sum(arg), mul(arg)—summation, multiplication of expansion terms (see section 6.1

Summation, multiplication)

• sum(<number>)—array initialization rule with additional distribution handlings. This

rule distributes the values of the array so that their sum will be equal to the specified

<number>. This rule is meant for the simulation engine and instructs it how to set the

initial values of array elements. There are four auxiliary keywords to this sum(n) rule

known as handlings:

o Free—specifies that the elements of the array can be distributed freely to obtain

the desired sum

o Head—specifies that the first element should be equal to the sum (the remaining

elements will be 0)

o Tail—specifies that the last element should be equal to the sum (the remaining

elements will be 0)

o Equal—specifies that the elements should be distributed evenly to give the

desired sum

• For example an array may have the following rules: [n]; sum(1); Equal. The sum(1)

and the Equal parts instructs the simulation engine to distribute the array elements

evenly so that their sum will be 1. If n is 4 the elements of the array will be [.25, .25,

.25, .25]. The array initialization and distribution rule are handy shortcuts.

31

5.3 Mechanism of expansion

Section 5.1 Expandable symbols listed the available expandable shorthand and triplet notations

and discussed how with the help of these symbols shorter and terser process code can be

written. This section describes how the shorthand symbol replacement works, the rules

governing the process, giving detailed examples. The transformation of expandable symbols to

the final variable names needed in calculations is called expansion.

5.3.1 Simple expansion

The expansion is always driven by the content of the Symbol column of code tables, meaning

that it selects the set of symbols used in expansion from a model worksheet. These symbols then

will be the base of expansion for other columns which effectively means that expandables in

other columns should match the Symbol column.

Figure 21 shows a simple case, where row 5 contains various state variable shorthand

elements.

Figure 21 SV shorthand example in row 5.

Taken Sumo1 as model, SV[] will be expanded by replacing it with all symbols taken from

the Components worksheet of Sumo1, transforming that single row into the following table:

Nr. Symbol Name Expression Unit

1 SVFA[] Volatile fatty acids (VFA) concentration SVFA_0[] g COD.m-3

...

55 H[] Enthalpy concentration H_0[] MJ.m-3
Table 2 State variables after simple expansion.

As mentioned before, the expandables in columns other than Symbol should match, because

values are taken from the same worksheet and the same row as Symbol specifies. In the example

this condition is met because:

• the Name column contains a triplet expandable which instructs the SMT to take a value

from the model file, worksheet Components, column Name, and the row specified by the

current symbol (SVFA through H)

• the Expression column contains an SV expandable which instructs the SMT to take a

value from the model file, worksheet Components, column Symbol

• the Unit column is like Name, but using the Unit column from the model

32

This simple case is spiced a bit with a Handling(Integrated) rule which tells the SMT to

include only those rows from the model that have Integrated in their Handling column. These

are the state variables from SVFA to H. The replacement content is shown in blue.

The expansion would be impossible if a non-Symbol column would contain a non-matching

expandable, for example if Name would contain MODEL.CVAR.Name where CVAR would instruct the

SMT to take values from the Calculated variables worksheet and the row specified by the current

symbol. But the symbols SVFA through H are not present among the symbols of the Calculated

variables worksheet.

Using expandables in the Name and Unit columns has the important benefit of easy

maintainability. If something changes in the model nothing has to be changed in process units.

5.3.2 Advanced expansion

The Symbol column contains more than one expandable. In this case the other columns should

contain matching expandables to those in the Symbol column.

The expandables in the Symbol column are expanded one by one producing a set of assignments

that has the cardinality equal to the Cartesian product of the symbol count on model

worksheets participating in the expansion. Too many expandables would produce a huge

number of assignments (the process code shipped with Sumo has no more than two

expandables per symbol). See example in section 6.2 Gujer matrix calculations and 6.3pH

calculation without summation.

5.3.3 Even more advanced expansion

The Symbol column contains one or more expandables but Expression contains matching and

non-matching expandables. In this case the non-matching expandables should be preprocessed

with rules before expansion, eliminating the non-matching expandables. After that the

procedure described in the previous subsection can be started. See the example in section 6.1

Summation, multiplication.

33

6 Special calculations

This chapter contains examples of advanced expansion. The examples are taken from a real

process unit, Layered SBR with calculated DO.xlsx, and Sumo1.xlsm is used as model.

6.1 Summation, multiplication

Row 124 of the following process code table shows an example of 5.3.3 Even more advanced

expansion. Symbol contains an expandable (SV) and Expression contains a matching SV and a

non-matching MODEL.Model.j expandable.

Figure 22 Advanced expansion examples in the Gujer matrix table.

In the example the non-matching expandable should be eliminated before expansion. This

is done by the sum(MODEL.Model.j) rule, which instructs the SMT to unwind the expression in a

sum by the MODEL.Model.j index as follows:

rate_SV[] = v1,SV[]*r1[] + v2,SV[]*r2[] + … + v79,SV[]*r79[]

The index MODEL.Model.j is taken from the Model worksheet, column j of the default model

containing numbers from 1 to 79 which are substituted in the summation.

Figure 23 The indexer column j on the Model sheet of Sumo1.xlsx.

34

After this step a simple expansion can be executed because the expression contains only

matching SV expandables (same is true for the Name) column. The result of the expansion is

shown in the following table:

Nr. Symbol Name Expression Unit

1 rate_SVFA[] VFAs concentration v1,SVFA[]*r1[] + … +
v79,SVFA[]*r79[]

g.m-3.d-1

…

64 rate_GN2[] Nitrogen gas concentration v1,GN2[]*r1[] + … +
v79,GN2[]*r79[]

g.m-3.d-1

Table 3 Result of expansion of row 124.

The Unit sheet does not contain an expandable, it's content will be preserved. Please note,

that only the blue colored symbols were the result of the expansion.

6.2 Gujer matrix calculations

In the previous example the expandable summation was taken out of context. If the whole code

table is taken in consideration it reveals calculation involving the so-called Gujer matrix.

The result of expanding rows 122-124 is the following set of assignments:

• in row 122 the columns contain one matching expandable represented by the

MODEL.Model.<column name> notation, meaning that the SMT can take values from

columns of the Model worksheet. In this case Symbol takes values from the j column

while Expression from the Rate column of the worksheet Model.

Nr. Symbol Name Expression Unit

1 r1[] OHO growth on

VFAs, O2

{µOHO,T * XOHO * MsatSVFA,KVFA * MsatSO2,KO2,OHO
* MsatSNHx,KNHx,BIO * MsatSPO4,KPO4,BIO *
MsatSCAT,KCAT * MsatSAN,KAN * BellinhpH}[]

g.m-3.d-1

…

79 r79[] Nitrogen gas transfer

- surface

{kLaGN2,sur * (SGN2sur,sat - SN2)}[] g.m-3.d-1

Table 4 Result of expanding row 122. The curly braces in Expression indicate that the array sign is applied to

the whole expression where it is the case.

• in row 123 Symbol contains two expandables. Expression contains two expandables as

well but in a tricky way: there is the matching triplet syntax expandable and, embedded

in it, the SV column expandable. This is OK because Symbol specifies the same two

worksheets: Model and Components to work with. The column part of the triplet syntax

will be expanded according to its matching Symbol expandable (i.e. to MODEL.Model.SVFA

when the Symbol expansion is v1,SVFA[] and so on). The result of the expansion is (taking

only the columns with expandables):

35

Nr. Symbol Expression Unit

1 v1,SVFA[] -1/YOHO,VFA,ox g.m-3.d-1

…

79 v79,SVFA[] g.m-3.d-1

80 v1,SB[] g.m-3.d-1

…

158 v79,SB[] g.m-3.d-1

…

5056 v79,GN2[] g.m-3.d-1
Table 5 The result of expanding row 123.

• for row 124 see section 6.1 Summation, multiplication.

6.3 pH calculation

In pH calculations the relevant worksheets of the model are pH and Species shown on the next

picture:

Figure 24 The pH and Species worksheets of the Sumo1 model. Please note that some rows are hidden.

Process units can reference the content of these worksheets with shortcut symbols and the

triplet notation. Figure 25 show the pH calculation section of a process unit:

36

Figure 25 The pH calculation section on the Code sheet of a process unit.

The three tables contain the following advanced expansions:

• in row 598 Symbol contains two expandables: MODEL.pH.Symbol and SPC. The Name

column contains also two matching expandables which will not cause any problem.

Expression has two expandables in the tricky way, explained in the previous section.

This indicates that the result will be the same bloated table of assignments as in the

previous example:

Nr. Symbol Name Expression

1 vdissH2O,[H+] Coefficient for Proton involvement in

Dissociation of water

10^(-pH)

…

12 vmapSFerrous,[H+] Coefficient for Proton involvement in ferrous

ions dissociated

13 vdissH2O,[OH-] Coefficient for Hydroxide ion involvement in

Dissociation of water

KW/[H+]

…

24 vmapSFerrous,[OH-] Coefficient for Hydroxide ion involvement in

ferrous ions dissociated

…

240 vmapSFerrous,[Fe2+] Coefficient for Ferrous ion involvement in

ferrous ions dissociated

SFe2/(AMFe*1000)

Table 6 Result of expanding row 598.

• in row 599 a simple expansion can be performed with a simple result set like in the Table

2, but instead of state variables the result will contain calculated variables of type

Equilibrium.

• in row 603 Symbol contains one expandable, but Expression contains a matching and a

non-matching expandable. The non-matching should be eliminated by a rule, in the case

by the rule sum(MODEL.pH.Symbol). First, the summation result will be:

SPC[] = vdissH2O,SPC[] + ... + vmapSFerrous,SPC[]

and after expansion the result is the following list:

37

Nr. Symbol Name Expression Unit

1 [H+][] Proton vdissH2O,[H+][] + … + vmapSFerrous,[H+][] mol.L-1

…

20 [Fe2+][] Ferrous ion vdissH2O,[Fe2+][] + … + vmapSFerrous,[Fe2+][] mol.L-1
Table 7 Result of expanding row 603.

• in row 607 Symbol contains one expandable, but Expression, again, contains a matching

and a non-matching expandable. The elimination of the non-matching expandable is

performed by the sum(SPC) rule. First, the summation result will be:

MODEL.pH.Symbol[] = MODEL.pH.[H+] * [H+][] + … + MODEL.pH.[Fe2+] *
[Fe2+][]

The Type(Chargebalance) rule selects the second table on the pH worksheet and the

resulting list of assignments will be:

Nr. Symbol Name Expression Unit

1 chargebalance[] Charge balance 1 * [H+][] + … + 2 * [Fe2+][] mol.L-1

2 IScalc[] Ionic strength fmono,IS,cat * [H+][] + … + fdi,IS,cat * [Fe2+][] mol.L-1
Table 8 Result of expanding row 607.

6.4 Event handling

Events in SumoSlang are represented by a chain of function calls. An event function is defined

in the Event code location. The name of the function is the section part of the Codelocation(…)

argument. The event function has one argument usually to pass timing information.

The event function can be called in process code by setting Symbol to the function name,

Expression to the function argument and specifying a Call rule, as the next example shows:

Figure 26 Event call example.

In this example the event function is defined in the table named Controller evaluation, and

it is called in two places: in row 6 of the Controller initialization table with the argument Now,

and in row 18 of the function definition table with the timing argument. The latter means that

the event calls form an infinite loop. Now and Time are keywords representing the time at the

start of the simulation and the current time at every call.

38

7 Namespaces

Namespaces are qualifiers or prefixes of symbols used in assignments. These prefixes usually

are not visible in the process code, only in the generated XML file. One exception is the

plantwide code file, where fully qualified symbols could be used (see 2.4.1 Plantwide code).

There are two types of namespacing

• implicit—performed automatically by the SMT behind the scenes

• explicit—declared in process code by the author of the process code to alter the

automatic namsespacing

7.1 Implicit namespaces

The modeled plant may contain equations where symbols are coming from different process

unit instances of the same kind. The generated XML contains equations from all process units.

To make the symbols unique and to place them in the context of their containing process unit,

they are qualified or decorated with the path from the plant root to their process unit (see

Figure 6).

The path elements are delimited with double underscore “__”. For example, the following

assignment in PU1,2:

SV = SV_0

will be generated as

Sumo__Plant__PU1__PU1_2__SV = Sumo__Plant__PU1__PU1_2__SV_0

in the XML file. The first segment, Sumo, is fixed. The root of the hierarchy is represented by

Plant which is the second segment and is provided by the Sumo software. The other segments

are the names of process units which lead to PU1,2, finally comes the variable name.

The process unit names are defined on the Structure worksheet of the root. Please remember

that the root is a virtual (invisible) process unit provided by the Sumo software, which provides

the plant name as well.

There is one more segment automatically included in case of model parameters: the model

name. When parameter inheritance is ON, process units will contain the following equation:

PAR = Parent..PAR

which in process unit PU1,2 will expand as the following (only the first model parameter of

Type(Kinetic) is shown, see Parameters worksheet in Sumo1.xlsm file and the Parent.. construct

in the next section.):

Sumo__Plant__PU1__PU1_2__Sumo1__muOHO = Sumo__Plant__PU1__Sumo1__muOHO

where the model parameters are prefixed with the model name Sumo1 (Sumo1__muOHO).

39

7.2 Explicit namespaces

Explicit namespacing is visible in the process code. The namespace should be placed as a prefix

to a symbol delimited with double dot “..” characters. The namespace can be one of the

following elements:

• Parent—keyword representing the direct parent process unit. At the moment, only the

direct parent unit can be referenced.

• Root—keyword representing the root of the hierarchy. With this prefix process units can

reference variables directly from the root.

• port name—one of the port names listed on the Unit worksheet of the process unit. This

allows calculations in pipes connecting process units.

• model ID—the ID specified on the Unit worksheet of the process unit. This can be useful

for process units using multiple models (see 8 Using multiple

models).

o model name—if the process unit is restricted to a specific model, the model

name can be used in namespacing. The restriction is made on the Unit worksheet

of the process unit, in the table with type Model and in column Valid. The model

names listed in the Valid column can be used in namespacing.

• process unit name—this should be a process unit name defined on the Structure

worksheet of a process unit. This means that this construct can reference symbols only

from child process units (a process unit knows the names of its children but does not

know the name of its parent).

The namespacing elements listed above are used as relative paths, but they will be extended

to absolute paths in the XML file. For example, on Figure 6 the process unit PU1 may contain a

symbol PU1,2..Q (referencing a symbol from one of its child process units). It will end up as

Sumo__Plant__PU1__PU1_2__Q in the XML file. To access a symbol from the direct parent process

unit the Parent keyword should be used, because a process unit does not know the name of its

parent.

40

8 Using multiple

models

The SMT can handle scenarios where more than one process models are used in a plant. The

following picture shows the process unit hierarchy using two models:

Figure 27 Process unit hierarchy with 2 models.

The graphical user interface does not handle yet multi-model plants. To understand how

the SMT handles multi-model projects, see 9.1 SMT command line usage.

Process units contain model identifiers on their Unit sheet. These are not model names—it

would mean that the units would be tied to one model. The identifiers are like local variables in

a structured programming language; they can be used in the whole process unit to refer to a

given model. Given here means that actual model names are coming somehow from the outside

and they are mapped to the model identifiers during a simulation (see this too in section 9.1).

8.1 Default model

The model ID specified on the Unit sheet represents, or in other words is mapped to, the model

used in the plant. It means that every expandable will be expanded from that model. If the plant

uses one model, there is no confusion. When more than one models are specified there is need

for clarification: it should be obvious which model is mapped to which ID.

Modeled plant with

model identifiers 1

and 2 Two models

named A and B

Process unit 4 with

model identifiers 1

and 2

41

The first model ID specified on the Unit worksheet is the default, and it will be used in

shorthand expansions. Further model IDs can be specified if the user would like to switch to

other models during expansion.

In this case the symbols should be namespaced explicitly with the other model ID (see 7.2

Explicit namespaces). A missing namespace prefix, again, means default model usage in

expansions.

The model names coming from outside are mapped to the plant class in the order of the

model identifiers on the Unit worksheet, i.e. M1 in the root will be mapped to A, and M2 to B.

This affects the expansion and the namespacing processes: expandables will be expanded and

model parameters will be namespaced from the correct model.

The order of model mapping from a composite process unit to its components is specified

on the Structure worksheet. The following picture shows the root process units from Figure 27.

Figure 28 Root of the hierarchy shown as a process unit.

Row 7 contains a trick, it “pushes down” M2 first then M1 in row 8, meaning that the first

model ID in PU4 will be mapped to the content of M2 from the root (i.e. B), and the second

model ID in PU4 will be mapped to A. Thus, B will be the default model in PU4.

The model IDs are used to write model independent process code. Not just that, but it

allows shuffling the models in child process units which would not be possible if model names

were used directly to identify the models.

8.2 Using non-default models

Section 5.1 Expandable symbols explains how shorthand keywords like SV, PAR, CVAR, SPC could

be substituted by a corresponding triplet notation, for example SV is a shorthand of

MODEL.SV.Symbol, where MODEL is the default identifier specified on the Unit worksheet of the

process unit. The shorthand notation cannot be used if non-default models are needed in the

process code. In that case the full triplet syntax should be used.

Figure 29 shows an example of multiple model usage for parameter inheritance in the

fictive plant depicted in Figure 27.

42

Figure 29 Parameter inheritance with two models.

The first PAR triplet shows the shorthand notation representing the default model, while the

second PAR triplet shows the usage of the full triplet syntax (please remember that the

shorthand can be used only for Symbol, Name and Unit must use the full syntax in both cases).

43

9 Advanced topics

This chapter contains descriptions of some deeper usage and translation mechanics in relation

to the SMT. This knowledge is not required in everyday modeling and the Sumo software, but it

is good to know nonetheless.

9.1 SMT command line usage

The SMT can be used as a standalone executable program. It is useful to quickly test the

correctness of the process code representing one or more process units. Figure 30 shows the

help information when the SMT is started in a command line window.

Figure 30 The SMT used from the command line.

In case of command line usage, the user should reproduce the root element of the process

unit hierarchy (provided automatically when the SMT is used through the Sumo software).

Moreover, some initialization data is required to reproduce the Sumo software functionality

where user settings are forwarded to the SMT, also automatically.

In addition to the folder structure shown on Figure 1 the command line user should add a

new folder named Plant classes. This should contain the process code files representing the

root element of a plant hierarchy. The root element is a composite process unit like the example

shown on Figure 5, i.e., it should list its components on a Structure worksheet. Figure 31 shows

an example with two process units linked together where the link is represented in the Internal

connection table. The Unit component column contains the process unit file names without

extension.

The Models column contains a single symbol, MODEL, which is the model identifier containing

the actual model name and it is declared on the Unit worksheet. The model identifier is

initialized with the correct model name by a separate file explained below. This separation

allows the reuse of the same plant root with different initialization data.

44

Figure 31 The root process unit representing a simple CSTR test plant.

The other initialization file contains global settings available to the whole plant. This file

should be placed in a subfolder with arbitrary name under the Process code folder. It is called a

plant instance file and its main purpose is to specify the model, some attributes and state

variable handlings globally used in the plant. Figure 32 shows the initialization file of the

previous CSTR test plant.

Figure 32 Initialization information for the simple CSTR example.

The table types and names speak for themselves, the only new element is the Scope tag in

handlings. The Scope(Instance) tag means that the listed state variable handlings are enforced in

all models while the handlings listed in Scope(M1) are enforced only in the model identified by

the argument (row 16 contains the model ID used in scoping). In this example there is only one

model identifier, but more than one can be specified if needed (see 8 Using multiple

models).

Please note that the Process code folder is not required to be the one installed by Sumo. In

fact, for testing purposes, it is a good practice to prepare a separate process code folder

somewhere else then copy the content of the installed Process code folder in it. Sumo provides

such a test folder named My Process Code which has the benefit of being taken in consideration

by the Sumo software, but for simple testing with the SMT the test folder can be anywhere.

45

9.2 Attribute and handling propagation

In the simple CSTR example the root Structure worksheet contains state variable handlings after

the Models column which will be enforced in all component process units. Root handlings, on

the other hand, will be overridden by handlings from the initialization file with Scope(Instance)

or Scope(M1). The latter overrides the root handlings only if a component uses the model

specified by the scope argument.

Attributes propagate like handlings, but without the complication of scoping. As a general

rule the root will override the attributes and handlings of its components while the initializer

overrides the attributes and handlings in the whole plant. Otherwise the attributes and

handlings specified on the Unit sheet of the individual process units will prevail.

9.3 Algebraic loops

When the plant contains feedback loops some equations in the participating process units

contain circular dependencies called algebraic loops. To solve such an equation system the

Sumo numeric engine uses an iterative process described later in this section.

The next picture illustrates a simple algebraic loop:

Figure 33 Simple algebraic loop.

The SMT contains an equation sorter module which recognizes algebraic loops and tries to

flatten (break) them at one of the vertices and declare the left-hand side variable as loop breaker

which will be calculated with the iterative process.

Calculating the arbitrarily chosen loop breaker may or may not produce a satisfactory result

(since the iterative process should be converging). The process code author should be able to

intervene and define a better loop breaker manually. This is a trial and error process: if the

automatic loop breaking does not give a result or it is calculated slowly, the author determines

which algebraic loop is the culprit and intervenes by giving a better loop breaker.

b = a + 2 a = 1 - c/2

c = b/5

the
equation
system

{
𝑎 = 1 − 𝑐/2
𝑏 = 𝑎 + 2
𝑐 = 𝑏/5

Definitions

• an equation system is represented by a
directed graph

• nodes—represent variables

• vertices—represent the equations

dependencies as a variable pair (vfrom, vto)

• the direction of the vertices is from the
right-hand side to the left-hand side. In case

of the equation b = a + 2 this means b  a

or a goes to b.

• an algebraic loop is equivalent to a directed
loop in the graph

Default sorter behavior

• break the loop at an arbitrary node
(represented by the dashed lines)

• define that node as a loop breaker variable

(b, c)

46

The SumoSlang allows this intervention; the author declares a loop breaker variable and

gives its properties (initial value, minima, maxima) with the help of a SolverConfiguration

table (see section 9.3.3). Figure 34 shows the abstract representation of this:

Figure 34 The same loop with a loop breaker given from outside.

9.3.1 1 Solving the equation system

Solving an algebraic loop involves calculating its loop breaker with an iterative process. To do

this, the original equation is transformed to an error function and the loop breaker is calculated

by minimizing the error through the iterative process. This requires a convergent error function

and the value of the loop breaker will be the one where the error is the closest to 0.

Breaking the loop, then defining the error function, then applying the iterative process to

minimize it, is done by the SMT behind the scenes or more precisely it prepares the instructions

for the Sumo numerical engine to do the iteration properly.

Figure 35 shows the abstract representation of this process:

Figure 35 Solving the loop by introducing an error function depending on the loop breaker variable.

9.3.2 Process code example for automatic loop breaking

The equations from Figure 33 can be written in SumoSlang as follows:

a = 1 - c/2

Break at a, with initial value = 1,

min = 0, max = 100

Advanced sorter behavior

• break the loop at a user specified node

• define it as the loop breaker variable
At a later stage

• configure it with the initial value of 1,
minimum value = 0, maximum value =
100

b = a + 2

c = b/5

(b, c)

b = a + 2

(a, b)

c = b/5

(b, c)

Try different a values
during iteration and
choose the one
where err(a) is
closest to 0.

The error function is generated

automatically from the equation a = 1 -

c/2. Calculating the error is equivalent to

solving the equation a - 1 + c/2 = 0.

All equations are calculated for different

a values during the iteration.

Note that this is not an algebraic loop
because the vertices do not form a
directed loop.

47

Figure 36 Process code representation of the simple equation system.

Expected XML output

The <variabledefinitions>…</variabledefinitions> block of the XML file should contain

the highlighted entry:

Figure 37 Variable 'a' in the variabledefinitions block

The ZeroTime/1 section should contain the highlighted entry to keep the SMT sorter happy

(avoid the variable Sumo__NRE__ALT__a was not found in the error equation). This is inserted

automatically by the SMT.

Figure 38 The same variable in the ZeroTime block.

The AlgebraicLoop/1 section should contain the blue highlighted entry and the

Integrated/1 section the yellow highlighted entry where the function call name is derived from

48

the block name and section name of the algebraic loop. The blue highlighted entry contains

information for the solver where its input is the loop breaker variable a and its output is the

error value. The code section inside solver contains the flattened equation system and the error

calculation equation inserted by the SMT.

Figure 39 XML overview showing the AlgeraicLoop and Integrated blocks to solve the equation system in the

example.

9.3.3 Process code example for manual loop breaking

Figure 40 shows how the process code author can manually declare a loop breaker for the

simple equation system used in the previous sections as example (the worksheet contains many

examples with the same variables which requires a distinction between them. In the different

examples the variables are suffixed with roman numerals.)

Figure 40 Solver configuration used to specify a loop breaker.

49

Please note that the loop breaker equation

a = 1 - c/2

is not present in the Equation system I table, it is replaced by the error equation. This error

equation is automatically provided by the SMT in the default mode discussed previously.

The sorter module recognizes the loop breaker variable and would not complain when it is

used on the right-hand side of other equations. The SMT will use the information in the

SolverConfiguration table at a later stage to provide input and output symbols to the solver

used to calculate the error (see Figure 39).

Expected XML output

The AlegbraicLoop block now contains a custom section name Sumo__NRE__ALT__section

specified in the Rule column of the SolverConfiguration table and namespaced according to the

container process unit.

Figure 41 XML overview showing the AlgeraicLoop and Integrated blocks in case of manual loop breaker

definition. The outcome is the same.

50

9.3.4 4 Complex equation system

Figure 42 shows the graph representation of a complex equation system containing multiple

loops:

Figure 42 Complex equation system with many algebraic loops and "manually" chosen loop breakers.

The lighter colored vertices represent the manually chosen loop breakers. Solving this equation

system require introducing 3 error functions (in default mode the SMT will choose the loop

breakers and the error equations) as shown in the following picture:

Figure 43 Solving the complex loop.

51

Process code example for the default method:

Figure 44 Process code example of the complex equation system.

The process code author relies on the SMT to solve the algebraic loop. If it is not satisfactory, a

manual intervention is required. Figure 45 shows the XML representation of the default

method, where the loop breakers chosen by the SMT are a, b, e. In this example the section name

7 is given automatically and it is a plant wide unique sequence number.

Figure 45 XML representation of the default algebraic loop solution.

Process code example for the manual method:

The process code author lists the manually chosen loop breakers in the SolverConfiguration

table and the loop breaker equations are replaced manually with the error equations.

52

Figure 46 Complex equation system with user defined algebraic loop handling.

The section name in the AlgebraicLoop block is undefined in this case but it should be different

from the default mode. One solution is to use one of the loop breaker variable names as section

name. In the following example the last variable name is chosen: hvii. Being a variable name (i.e.

not a plant wide unique name), it should be namespaced according to the container process

unit.

Figure 47 shows the XML representation of the manual loop breaker selection:

Figure 47 XML representation of the manual algebraic loop solution.

The examples can be found in the references subfolder of the documentation installed with the

Sumo software.

	1 Introduction
	1.1 What is SumoSlang?

	2 Structure
	2.1 General settings
	2.2 Process model
	2.3 Process units
	2.3.1 Composite process units

	2.4 Process unit hierarchy
	2.4.1 Plantwide code

	3 Process code layout
	3.1 Table structure
	3.1.1 Simple table
	3.1.2 Arrays
	3.1.3 if block
	3.1.4 C++ code

	3.2 Table descriptor
	3.2.1 Table tag

	3.3 Generating the intermediate XML file

	4 Basic language elements
	4.1 Assignments
	4.1.1 Operators

	4.2 Data types
	4.3 Symbol roles
	4.4 Functions

	5 Advanced language elements
	5.1 Expandable symbols
	5.1.1 SV
	5.1.2 PAR
	5.1.3 CVAR
	5.1.4 SPC
	5.1.5 Triplet notation

	5.2 Rules
	5.2.1 Attributes
	5.2.2 Handlings
	5.2.3 Non-keyword rules
	5.2.4 Exempt, Only
	5.2.5 Other rules

	5.3 Mechanism of expansion
	5.3.1 Simple expansion
	5.3.2 Advanced expansion
	5.3.3 Even more advanced expansion

	6 Special calculations
	6.1 Summation, multiplication
	6.2 Gujer matrix calculations
	6.3 pH calculation
	6.4 Event handling

	7 Namespaces
	7.1 Implicit namespaces
	7.2 Explicit namespaces

	8 Using multiple models
	8.1 Default model
	8.2 Using non-default models

	9 Advanced topics
	9.1 SMT command line usage
	9.2 Attribute and handling propagation
	9.3 Algebraic loops
	9.3.1 1 Solving the equation system
	9.3.2 Process code example for automatic loop breaking
	9.3.3 Process code example for manual loop breaking
	9.3.4 4 Complex equation system

