Sumo22 Training Course

This six online session course can be taken in three different ways:

- → Introductory First four sessions (700 USD)
- → Advanced Last four sessions (800 USD)
- Complete All six sessions (1000 USD)

Each session will be 4 hours, from 10 AM to 2 PM EDT

Includes

- → A one-month Sumo22 license
- → A one-month Digital Twin license

Register here, click on

Course registration

Program details

next page

Contact

- → web: www.dynamita.com
- for more information: info@dynamita.com

Ferris. Ancid metals: Ancid metals: Ing. Clarke:	N
	F
Trainer Fan	C
Department of the second of th	F
	9

Name	Energy center	Unit
Plantwide electric power demand	257	kW
CHP unit power generation	142	kW
Plant electric energy consumption	6177	kWh
Self sufficiency	55	%

Who will benefit?

New users/modelers should take the introductory part (first four sessions). Existing or experienced model users can start from session 3. All six can be taken for a complete overview of Sumo if desired.

→ Software familiarization

- → Learn how to use basic and advanced features and build process configurations
- → Dynamic simulation set-up, Data plotting, Scenario analysis

Full plant model calibration

- → Wastewater characterization Municipal and industrial, sludge feed, food waste
- → Activated sludge and biofilm (including aerobic granular and MABR) systems
- → BOD-removal/Nit-denit/Enhanced Biological Phosphorus removal/GHG model
- → Predicting alpha factor for improved aeration design and modeling
- Modeling aerobic facultative lagoon (predict sludge buildup and dredging)
- → Thermal hydrolysis, anaerobic digestion, and sidestream treatment
- Controllers: standard and ABAC, SRT control, AvN control, and NRCY control
- → Energy/Cost module (Plant power demand, power generation, and self-sufficiency)
- **→** Carbon footprint

→ Integrated Urban Watershed modeling

→ Digital Twin for Process Improvement

MODELING	Time (EST)	Nov 2th	Nov 4th	Nov 8th	Nov 10th	Nov 15th	Nov 17th
PROCESSA	10:00 - 10:30	Personal introduction, program overview, and introduction to good modeling practice	Nitrification, denitrification	What's new Sumo22, including IUWS	Biological Phosphorus removal - model, application, and constraints	Sidestream treatment - deammonification	P recovery and precipitation (Sumo2S)
₹	10:30 - 11:00						
	11:00 - 11:30	Sumo22 - Setting up full plant for steady state and dynamic simulation	Modeling aerobic facultative lagoon (predict sludge buildup and dredging)	Chemical P - Iron and Alum Aeration modeling - Diffuser versus mechanical, using aeration tool, alpha modeling	Controllers introduction, setup, and application	Complete energy and cost calculation - upgrade evaluation, self sufficiency	Carbon footprint and GHG estimation modeling
,	11:30 - 12:00						
20 20 20 20 20 20 20 20 20 20 20 20 20 2	12:00 - 12:30		Conventional versus Advanced digestion (Thermal hydrolysis), Post aerobic digestion				Introduction to Sumoslang - Biokinetic model, Plantwide, Process units
	12:30 - 13:00	Wastewater characterization - data collection, reconciliation, and			Biofilm modeling - fundamentals and advanced setup	Pump and blower curve examples, sizing a blower	
	13:00 - 13:30 d		Clarifier modeling				Digital twin - c-API, Python script, analysis, optimization, distributed and cloud runs
	13:30 - 14:00	fractionation					